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ABSTRACT
Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid
nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad
application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from
molecular simulations, circumventing partly heuristic assumptions in traditional approaches. In this workflow, the Onsager coefficient is
derived from the proposed DDFT-informed ordinary differential equation network, trained to replicate density evolution observed in Brow-
nian dynamics (BD) simulations. We validate our method by studying the lamellar transition in symmetric diblock copolymer melts, where
the DDFT model with the extracted Onsager coefficient precisely reproduces both the density evolution and interface narrowing predicted
by BD simulations, thereby demonstrating the reliability of the present scheme. Meanwhile, our studies reveal the strong relevance of the
Onsager coefficient with dynamic processes and identify the explicit connection between dynamic correlations, characterized by the corre-
lation strength and correlation length, and the system parameters, e.g., the Flory–Huggins interaction parameter. We found that far from
the transition point, the correlation that transmits the thermodynamic force into a density current is localized and strong, while close to
the transition point, it becomes long-ranged but weak. Our approach aims to develop a more generalized framework to bridge more refined
particle-based simulations to more coarse-grained field-based calculations, and the insights gained by using our approach could be extended
to other non-equilibrium systems in polymer sciences.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0249439

I. INTRODUCTION

Dynamic density functional theory (DDFT) describes the time
evolution of the one-body density. It extends the classical den-
sity function theory1,2 by combining the free energy functional of
the self-consistent field theory (SCFT)3,4 with a diffusive dynami-
cal model for the polymer relaxation5,6 and gains reasonable success

in describing dynamic processes of polymer systems, for example,
phase separations7–9 and order–disorder transitions.10–12 The gen-
eral form of the DDFT evolution equation for an inhomogeneous
multi-component polymer system is given by13–21

∂ϕα(r, t)
∂t

= ∇ ⋅ ∑
β
∫ dr′ Λαβ(r, r′)∇μβ(r

′, t), (1)
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where ϕα(r, t) denotes the density field of component α at position
r and time t. μβ(r

′, t) is the chemical potential of component β at
position r′ and time t, derived from the SCFT free energy functional
F{ϕ} via μβ(r

′, t) = δF/δϕβ(r
′, t).3,4 Λαβ(r, r′) is a mobility matrix,

also known as the Onsager coefficient, which relates the density cur-
rent of the monomer α at position r to the thermodynamic driving
force (−∇μβ) on the monomer β at position r′.14,22

DDFT is characterized by its multiscale and hybrid nature in
the sense that the free energy functional explicitly considers the
microscopic topology of the polymer chains,3,4 while the mesoscopic
dynamic equation has a heuristic origin as the Onsager coefficients
Λαβ are normally treated as free parameters.12,14,23–25 Different forms
of the Onsager coefficient would lead to different transition path-
ways between two morphology phases. One typical example is the
dynamics of the vesicle formation from spherical micelles, where the
local Onsager coefficient predicted one single pathway during the
self-assembly,26 and in contrast, nonlocal Onsager coefficients sug-
gested competing pathways,7,8 which were later confirmed by both
experiments27–29 and simulations.30–33 Therefore, a proper choice of
Λαβ that accurately describes the nonlocal correlations in the system,
is crucial for the applicability and validity of the DDFT.

Currently, the expressions of the Onsager coefficient
are constructed in an empirical manner and with rational
simplifications.12,14,23,34 In principle, the most rigorous way to derive
the Onsager coefficient may start from the dynamic equations of
the polymer monomer coordinates. Through a systematic coarse-
graining scheme, the dynamics is projected on to the evolution of
some collective variables, for example, polymer densities. Then, an
explicit form of the Onsager coefficient could be extracted.35 This is
the basic idea of the Mori–Zwanzig formalism36,37 and the dynamic
mean field theory.38,39 However, the finally obtained dynamic
equation for the polymer density is quite complex due to the fact
that contributions from different length and time scales are not
effectively separated. This makes it difficult to obtain a definite and
practically simple expression of the Onsager coefficient. To simplify
the dynamic equation, Fraaije et al.23,40 considered the Rouse chain
dynamics and obtained an evolution equation of the density being
the same form as Eq. (1). In this formalism, the Onsager coefficient
is proportional to the density correlation functions, which facilitates
further simplification to the Onsager coefficient. There are a few
choices of simplifications: one can neglect the density correlations
to get a local dynamic model,23 approximate the density correlation
as the nonlocal Debye function,14,34 or obtain the external potential
dynamics (EPD)14 by taking the translational invariant assumption.
Further studies illustrate that the local DDFT typically overestimates
the speed of phase transitions, whereas the nonlocal DDFT tends to
underestimate it.9,12 To properly describe the multiscale behaviors,
Qi and Schmid proposed a mixed scheme,12 where the short scale
movement of monomers represented by a local mobility function
and large scale diffusion of polymer chains controlled by the Debye
mobility function are coupled simultaneously. One main drawback
of this mixed scheme is that a phenomenological parameter has
to be introduced to tune the relative contribution from local and
nonlocal dynamics, and this parameter is normally set empirically
without solid physical considerations.25 Due to its simplicity and
extendibility, DDFT of Fraajie et al. and its variants have been
widely used to study the dynamic behaviors of polymer systems.7–12

Alternatively, one can obtain the Onsager coefficient by assum-
ing Eq. (1) to be correct a priori and introducing further relations
to determine Λαβ. Representative studies include the relaxation
time approach (RTA)25 and the dynamic random phase approxi-
mation (DRPA) theory,24,41 where the Onsager coefficients are all
expressed in terms of the polymer chain structure factors. To get
an analytical expression, the RTA and DRPA took the homoge-
neous state as the reference state and adopted free Gaussian chain
approximations, which imply that they may fail when the sys-
tem stays far away from the order–disorder transition point. It
is interesting to note that in the RTA, a simulation method was
also proposed; that is, from the simulation trajectory of polymer
chains in a homogeneous reference state, the chain structure fac-
tor can be calculated directly, and then the Onsager coefficient
is determined. Regarding molecular simulations to determine the
Onsager coefficient, in fact, the Green–Kubo formalism gives a
standard tool.42,43 However, numerical calculations and theoret-
ical analysis demonstrated that the Green–Kubo relation is not
suitable for evaluating q-dependent Onsager coefficient within the
DDFT frame.25

Although RTA and Green–Kubo formalism remain deficient in
evaluating the Onsager coefficients,25 molecular dynamic (MD) sim-
ulations have demonstrated their advantages, for example, they are
able to establish directly a mapping between the microscopic infor-
mation of the polymer systems and the Onsager coefficient, thus
providing a feasible bottom-up scheme. However, it seems that few
studies are progressed along this direction and lacking an efficient
tool to deal with the large amounts of simulation data may be the
main obstacle.

Fortunately, data-driven machine learning (ML) methods, as
a general-purpose tool, have revolutionized many scientific and
engineering fields.44 It is an important research area to discover
unknown governing parameters, such as transport and kinetic coef-
ficients, in physical evolution equations from observational data,
which typically falls under the category of inverse problems.45 Cur-
rently, this type of research has received significant attention in
various domains, including fluid dynamics,46 heat transfer,47 sys-
tems biology,48 earthquake seismology,49 and hydrology.50 Even
extracting governing equations has seen substantial progress.51,52

However, during the extraction of governing equations, no prior
constraints are imposed to satisfy any physical principles, mean-
ing the learned dynamics may lack clear physical structure and
theoretical guarantees,53 thus posing a significant challenge to the
physical interpretability of these equations. In the field of poly-
mer science, especially phase-separated polymers, such research is
still in its infancy. Ran et al.54 have implemented ML techniques
to infer the diffusivity in the constitutive equation from evolution
trajectories of density. However, their data were obtained by solv-
ing analytical equations with given diffusion constants rather than
through MD simulations or experiments. As a result, this approach
may have trouble when confronted with inherent thermal fluctua-
tions and noise in particle simulations or experimental systems.55

Here, we propose a ML technique to extract Onsager coefficient
functions from particle-based simulation data within the frame-
work of DDFT, allowing field-based simulations to replicate the
evolution observed in particle-based simulations. In addition, the
extracted Onsager coefficients can facilitate the analysis of mesoscale

J. Chem. Phys. 162, 034901 (2025); doi: 10.1063/5.0249439 162, 034901-2

Published under an exclusive license by AIP Publishing

 30 April 2025 09:02:51

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

correlations in the dynamic evolution of the system. This method
offers a systematic framework for constructing mesoscale theory
from microscopic simulations, avoiding most heuristic assump-
tions and unrealistic simplifications typically involved in theoretical
derivations.

To exploit the microscopic information of molecular simu-
lations, in this work, we combine the Brownian dynamics (BD)
simulations with the DDFT [see Eq. (1)] constructing a hybrid
scheme for the calculation of the Onsager coefficients. Concretely,
we derive the Onsager coefficients from the DDFT-informed ordi-
nary differential equation (ODE) network (DIO Net), which is
trained to reproduce the density evolution from BD simulations
within the DDFT framework. The obtained Onsager coefficients are
assessed through the comparison of dynamic density functional cal-
culations with the pure BD simulations, and the results show that
they are physically reasonable and of high accuracy. In addition, our
studies reveal the strong relevance of the Onsager coefficients with
the dynamic processes, suggesting that the extracting of Onsager
coefficients from the reference homogeneous states, which is nor-
mally done in practice, may have large deviations. By fitting the
Onsager coefficient to a given form of correlation function, we
find the explicit connection between the dynamic correlations and
system parameters. Typically, we find that for a polymer system
far from the transition point, the Onsager coefficient has a local-
ized form with large magnitude, i.e., in this case, external forces
inspire fast movement of nearby monomers, while close to the
transition point, the Onsager coefficient becomes wide and weak;
therefore, thermodynamic forces affect the motion of the whole
chain in a long distance away but only weakly. The established for-
mula of the Onsager coefficient facilitates the understanding of the
microscopic origin of the nonlocal correlations in the system, and
thus provides an opportunity to tune dynamic processes and other
physical properties through the control of correlations. From the
technical point of view, our scheme improves the performance of
dynamic density functional modeling as it combines the advantages
of the molecular simulations (fine-grained and accuracy) and the
DDFT method (coarse-grained and efficiency). In fact, our study
showed that to extract the Onsager coefficient, BD simulations with
a short time interval are sufficient. Then, inserting the obtained
Onsager coefficient into the DDFT allows a pure dynamic den-
sity field calculation, which is more efficient in comparison with
BD simulations.

II. MODEL SYSTEM AND METHODS
To illustrate our combined scheme, let us consider the dynam-

ics of morphology formation in diblock copolymer melts after a
sudden quench from χN = 0 to a given χN = 12–20. Here, χN is
Flory–Huggins interaction parameter and controls the incompat-
ibility between different types of monomers.56 In particular, the
diblock copolymer melts are composed of symmetric flexible poly-
mer chains, where the A block and B block have the same poly-
merization, i.e., NA = NB, with average monomer density ρ0 and
total polymerization N = NA +NB = 40 in a simulation box of size
Lx × Ly × Lz = Rg × Rg × 3Rg , where Rg is the radius of gyration.
Under this setup, the system would self-assemble from the initial
homogeneous state into a lamellar structure with one period along
the z direction.12,25 Please note that the box size is fixed for all

different χN, which means that the system would be a bit frustrated
at equilibrium and the lamellar spacing is not fully commensu-
rable to the box length Lz.12 Throughout this paper, lengths are
represented in units of the radius of gyration Rg of an ideal chain,
energies are in units of the thermal energy kBT, and time is in
units of τ = R2

g/Dc. Here, Dc represents the diffusion constant of
one whole chain, which is derived from the monomer diffusivity D0
via Dc = D0/N.

In our study, we assume that the system is incompressible, i.e.,
at each location and any time, the volume fractions of A monomers
and B monomers satisfy ϕA(r, t) + ϕB(r, t) = 1, which is commonly
used in the previous studies.24,41,57–60 Then, the set of time evolution
equations of the volume fractions ϕA and ϕB reduces to one,

∂ϕ(r, t)
∂t

= ∇ ⋅ ∫ dr′Λ(r, r′)∇μ(r′, t),

where
ϕ(r, t) ≡ ϕA(r, t) − ϕB(r, t),

Λ(r, r′) ≡ ΛAA(r, r′) −ΛAB(r, r′),
μ(r, t) ≡ μA(r, t) − μB(r, t).

(2)

In terms of the volume factions ϕA, ϕB and their corresponding
conjugate potential fields ωA, ωB, the chemical potential difference
μ can be expressed according to the SCFT as μ(r, t) = −χNϕ(r, t)
+ (ωB(r, t) − ωA(r, t)). (See the Sec. S1 of the supplementary
material).

Generally, the Onsager coefficient is nonlocal and history-
dependent;24,61 here as a proof-of-principle study and also to sim-
plify the mathematical treatment, we have neglected the memory
effect and also taken the translational invariant approximation
to get Λ = Λ(∣r − r′∣). The translational invariant approximation
is valid when χN is close to 10.5 the order–disorder transition
point.12,24,25,41,62 Now, we can conveniently formulate the DDFT
equation [Eq. (2)] in Fourier representation34 as

∂ϕ(q, t)
∂t

= −q2Λ(q)μ(q, t), (3)

which serves as the basic equation in the current DDFT formalism.
This implies from the theoretical aspect that single chain approxi-
mation and motion of center of mass are adopted, which fall into
the framework of the theory by Fraaije et al., i.e., memory effect is
neglected.23,40 This should be valid in a later dynamic stage when
the whole chain starts to migrate.

For molecular simulations, we adopt a Brownian dynamic
scheme, where the interaction potentials are chosen as the Edwards
type such that BD dynamics and the SCFT share the same form
of Hamiltonian.63–65 This establishes the equivalence in principle
between the particle-based BD simulation and the DDFT [Eq. (1)] in
describing mesoscopic properties of the polymer systems and thus
underlies our combination technique. In fact, the BD simulations
deal with a compressible system, and to match the incompressible
condition, the volume fractions obtained from the BD simulations
are rescaled (see later part of the article for further information). The
expression of the BD equation and other related details can be found
in Sec. S3 of the supplementary material.

In principle, there is a mapping from microscopic dynamics
(e.g., Newtonian dynamics and Brownian dynamics) to the dynam-
ics of collective quantities (e.g. monomer density), which is normally
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referred to as the coarse-graining process. The structure of the
obtained evolution equation of the collective quantities depends
strongly on the form of the microscopic dynamics. However, a rig-
orous projection from BD dynamics for monomers to the dynamic
density functional description would result in an evolution of poly-
mer density with a complex form, which is hard to find a solution
even numerically.38,39 In the present study, instead of performing the
mapping, we adopt the assumptions by Fraaije et al. and construct an
explicit and simple form of the density evolution equation with the
memory effect being unfortunately lost.23,40 Therefore, the dynamic
equation Eq. (1) gives a universal description of dynamics for poly-
mers obeying Brownian dynamics given that the assumptions of
Fraaije et al. hold.

On the basis of BD simulations and within the framework of
DDFT, we propose a workflow shown in Fig. 1 to extract the Onsager
coefficient. The main procedure goes as follows: initially, we run the
particle-based BD simulations to generate the monomer trajectories
for all monomers during the phase transition of the diblock copoly-
mer melt from homogeneous to phase-separated lamellar states
(middle-left of Fig. 1). The obtained monomer trajectories work as
the original raw data.

A. Particle-to-field transformations
Subsequently, to obtain a continuous and smooth density field

(middle-center of Fig. 1), which is the collective variable that DDFT
mainly concerns from discrete particle distributions, we employ the
particle-to-field transformations. This is accomplished through two
steps: (1) the particle-to-field convolution with a kernel (top left of
Fig. 1) and (2) the average of the density field in a neighboring time
interval (top right of Fig. 1).

In the particle-to-field transitions, the central quantity is the
introduced smoothing function, which is the so called convolution
kernel.51,66,67 The kernel serves as a weighting function that con-
verts discrete particle locations in the system into continuous density
fields, analogous to the point-spread function of a microscope. For
example, with monomer positions denoted by Rm,j(t), an associated
particle number density field ϕ(r, t) can be defined by

ϕ(r, t) =
1

ϕ̃(r, t)

nc

∑
m=1

N

∑
j=1

Im,jK(r − Rm,j(t)), (4)

where the normalization factor ϕ̃(r, t) = ∑nc
m=1∑

N
j=1 K(r − Rm, j(t))

represents the total density at position r, ensuring incompressibility,

FIG. 1. Sketch illustrating the main pro-
cedure of extracting the Onsager coef-
ficient Λ in the framework of DDFT
from particle trajectories generated by
BD simulations. Initially, inputs are
time-series data for particle positions
Ri(t) obtained in BD simulations with
the microscale resolution. Subsequently,
density fields are obtained by employ-
ing convolution with a kernel [Eq. (4)]
and density averaging [Eq. (7)]. Finally,
the DDFT-Informed ODE Net is designed
to determine the Onsager coefficient
Λ from density fields. Herein, den-
sity ϕ(z, t) is defined as ϕ(z, t) =
ϕA(z, t) − ϕB(z, t) by using indicator
function Ii , where Ii = 1 for monomer A,
otherwise Ii = −1 for monomer B.
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i.e., ϕA(r, t) + ϕB(r, t) = 1. The symmetric kernel K(r) is centered
at r = 0 and is subjected to the normalization ∫ drK(r) = 1, so that
the total number of particles is recovered from ∫drϕ̃(r, t) = Nnc.
The indicator function Im,j, which guarantees ϕ(r, t) = ϕA(r, t)
− ϕB(r, t), identifies the type of the jth monomer of mth chain. In
particular, Im,j = 1 for monomer A, otherwise Im,j = −1 for monomer
B. In general, the kernel function depends on the three dimen-
sional coordinate r, which may be complex. However, the sym-
metry of the morphology phases (homogeneous state and lamellar
phases) determines that the density varies effectively only along
the z direction. Therefore, we define a one-dimensional density
by taking the integration over x and y coordinates, i.e., ϕ(z, t)
= ∬ dxdyϕ(r, t). We should note that correlations still occur along
the x and y directions, which are, however, not accessible because
they give no contribution to the density evolution as the ther-
modynamic forces along these two directions are zero due to the
homogeneity.

We have freedom to choose the form of the kernel function,
which finally affects the smoothness of the density field. Here, we
use a Gaussian kernel K(z)∝ exp [−z2

/(2σ2
)], where the kernel

width σ is a free parameter (also see Sec. S4.1 of the supplementary
material), and it determines the extent of coarse-graining. As shown
in Fig. 2(a), when σ is small, the obtained density profile at equi-
librium is rough with large fluctuations. This is because a narrow
kernel could only map local particle distributions to the density.
With the increase in σ, the kernel function becomes wider and
more monomers are involved in the coarse-graining, so the density
becomes smoother. It can be conceived that when σ is larger than the
size of the system, all particles are taken into account, and the den-
sity approaches flat with the information of monomer distribution
completely lost.

To find a compromise where the mapped density is sufficiently
smooth, while information about monomer aggregations remains,
we define a modified entropy H(σ, t)68,69 to measure the qual-
ity of density conversion. H(σ, t) has the meaning of information
entropy (Shannon entropy),70 and it encodes the spectral density,

FIG. 2. Influence of the Gaussian kernel width σ on the equilibrium density pro-
files ϕeq (a) and spectral entropy H (b) for the particle model data at equilibrium
with χN = 12. Herein, Hmax refers to the value of H at σ = 0.0003Rg used to nor-
malize H and show the proportion of information retained for different values of
σ compared to σ → 0. The dashed red line in panel (b) indicates the spectral
entropy corresponding to the equilibrium density profile at χN = 12 as derived from
self-consistent field theory.

i.e., distribution of power in the frequency domain, into one value,
i.e.,

H(σ, t) ∼ −∑
q

S(σ, t, q)log2S(σ, t, q), (5)

where S(σ, t, q) is the amplitude of the density fields ϕ(σ, t, z) in
Fourier space,

S(σ, t, q) = ∣∫ dzϕ(σ, t, z) exp (2πiq ⋅ z)∣
2

. (6)

This type of Shannon entropy is widely used across various
fields, such as brain-computer interface68,71 and machinery condi-
tion monitoring,69,72 to understand the changes in sequence data.
According to the definition, the modified spectral entropy can yield
a larger value when the amplitude distribution is flat or the density
peak is very high; otherwise, it gets a smaller one.

Figure 2(b) shows the scaled spectral entropy H/Hmax of the
equilibrium density ϕeq with respect to the extent of the coarse-
graining measured by σ. As expected, with the increase in σ, the
density profile becomes smoother since more microscopic infor-
mation about the polymer states is lost, and the spectral entropy
exhibits a monotonic decrease. The sharp decrease in H in the
small σ region corresponds to the process of smearing of particle
locations, while that in the large σ region is related to the flat-
tening of the density field. In contrast, in the intermediate region,
where σ spans roughly from 0.01Rg to 0.1Rg, H decreases quite
slowly approaching a constant. This indicates that, in the plateau
region, the density profile is insensitive to the coarse-grain extent
σ. Therefore, any σ situated within the plateau region gives us
an appropriate choice to generate a density profile, which is very
smooth and simultaneously contains sufficient information to accu-
rately capture the density evolution. In fact, we have compared
the densities produced by several chosen σ within the plateau H
region, and almost exactly the same density profiles are observed
showing no influence of the coarse-graining extent (see Fig. S5 in
the supplementary material for details). Without loss of general-
ity, we set σ = 0.05Rg in the dynamic evolution process for deriving
a continuum model from the simulation data in the following
calculations.

To further refine the smoothness of the density field, after
the particle-to-field conversion, we also perform a time aver-
age of the density from different density trajectories in a short
neighboring time interval. Mathematically, the averaging can be
formulated as

ϕ(z, ti) =
1

nT
∑

tj∈Uti

ϕ(z, tj), (7)

where Uti denotes a time range [ti − ε, ti + ε] corresponding to about
1000 density samples ensuring minimal density variation and suffi-
cient data for averaging, and nT is the number of density samples
in Uti . The density fields obtained in this way are much smoother,
as confirmed by the comparison of density profiles before and after
such averaging [see Figs. 3(a) and 3(b)]. This average is commonly
carried out in the calculation of correlation functions to reduce
the statistical errors and is referred to as the pre-average or block
average.73 Here, such average resembles the ensemble average and
in addition, avoids unnecessary computational burdens. In fact, in
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FIG. 3. Density profiles after the smoothing with the Gaussian kernel (a) and further
by the average of density trajectories sampled within a short time interval (b) at
different time. The Flory–Huggins parameter is chosen as χN = 12.

most cases, this average is necessary, especially in a dilute system,
because the particle-to-field mapping cannot get a perfectly smooth
density upon just one instant chain configuration. Even small fluctu-
ations in the density profile would be strongly enlarged when evalu-
ating the chemical potential through the density inversion in getting
the auxiliary potential, as the profile of auxiliary potential is suscep-
tible to the density distributions, which may result in a numerical
failure in the subsequent calculations. For the present system, our
calculations show that this pre-average is necessary, otherwise the
large fluctuations in ϕ(z, t) would not lead to a meaningful Onsager
coefficient.

B. Inference of the Onsager coefficient by machine
learning

Finally, the density fields generated in this way are used
for model training to obtain the Onsager coefficient Λ by using
DDFT-Informed ODE Net (bottom of Fig. 1), inspired by DDFT.
More details are given in the following. Once the density fields
are obtained, while, in principle, it is possible to directly solve
the Onsager coefficient Λ by Eq. (3), this is not a trivial task
in practice. The smoothness of density ϕ(r, t) at a given time t
does not consequently result in a continuous evolution of ϕ(r, t),
i.e., non-smooth ∂tϕ(r, t). In addition, the chemical potential μ,
derived from SCFT, is sensitive to density fields. The mathemati-
cal features of these quantities related to the continuity and noise
severely hinder the computation of the Onsager coefficient Λ against
overfitting.

Therefore, as shown in the bottom panel of Fig. 1, we specifi-
cally design a DDF-Informed ODE Net (DIO Net), which consists
of two sub-networks, the ODE Net and the fully connected Neural
Net. ODE Net, first proposed by Chen et al.,74 is a deep learn-
ing algorithm that blends neural networks, which learn the time
derivatives, with time integration methods, such as the Runge–Kutta
method,75 and facilitates the learning of time-continuous dynam-
ics, represented as a system of differential equations, solely from
discrete-time observations. Herein, we use it to obtain the time par-
tial derivative of the density ∂tϕ(r, t) from discrete-time density
fields. Meanwhile, the fully connected Neural Net is used to describe
the Onsager coefficient Λ by minimizing the DDF loss and ODE loss

simultaneously. In particular, the ODE Net is pre-trained, i.e., ini-
tially training the ODE Net solely, to facilitate faster convergence.
Once well trained, ΛML

(r, r′) obtained from this ML model can
be incorporated into the DDFT equation, enabling the density to
evolve from the initial time. More details about the model structure
and training process are provided in the Secs. S5.1 and S5.2 of the
supplementary material.

In most cases, physics-informed neural network (PINN), a
type of universal function approximator embedding the knowl-
edge of physical laws described by partial differential equations
into the learning process, is used to compute the derivatives of
functions.54,76,77 However, in our study, we utilize ODE Net instead
of PINN. This choice is primarily because ODE Net models time
series based on differential equations, whereas PINNs merely fit the
time series, often leading to overfitting of data. Moreover, ODE Net
is capable of handling non-regularly spaced intervals and incomplete
measurement data.78 This capability facilitates the extension of the
model to experimental measurements, thereby addressing potential
issues of missing data.78–80

We extract the time-dependent density profile in a time win-
dow of [t0, te] from BD simulations for the model training. The
time duration Δt = te − t0 is about one-quarter of the region where
the density profile changes significantly. Here, t0 denotes the initial
time of the sampling interval, which is roughly the time when the
interface begins to form and will be discussed in detail in the follow-
ing. Within this time window, due to the time step dtBD = 0.001/N
of BD simulations, there are about ten thousand time points avail-
able. However, in practice, such a large dataset is unnecessary since
the variation of density fields between consecutive time points is
minimal. Therefore, we select approximately Nt ≈ 400 evenly spaced
time points within this time window to train the model. Notably, we
found that the final results are not highly dependent on the specific
initial time t0 or the time duration Δt; any sub-time period between
the initial time t0 and the time when the density fields just reach at
the equilibrium state can also produce satisfactory results, which will
be discussed in detail later.

FIG. 4. Time evolution of the normalized spectral entropy Hnorm, which describes
the rate of evolution and the maximum density ϕmax. Herein, Hmax

norm refers to the
value of Hnorm at t = 0, used to normalize Hnorm and show the proportion of infor-
mation retained for different values of t compared to t = 0. The dashed red line
indicates the initial time t0 = τ. The parameter χN = 12 is chosen.
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In the early stages of the structure evolution, due to the
subdiffusive segmental dynamics, the Onsager coefficient is time-
dependent and results in significantly faster structure forma-
tion dynamics in t ≪ τ than in t > τ.24 To extrapolate a time-
independent Onsager coefficient with ML, we determine the initial
time t0 with the normalized spectral entropy Hnorm. The spectral
entropy Hnorm is based on Eq. (5) and introduces a normalization
factor [∫dqS(t, q)]−1 for S to eliminate the influence of the absolute
value of density on entropy, highlighting the changes in the shape of
the density profiles.68,69 As shown in Fig. 4, at the initial stage, the
shape of density changes rapidly and thus results in a rapid decrease
in Hnorm. Later, a plateau of Hnorm emerges, indicating that the shape
of the density becomes nearly constant. Therefore, for our system,
we roughly choose the turning point of Hnorm as the initial time for
learning the Onsager coefficient, i.e., t0 = τ at χN = 12. For a deep
quench, the density changes fast, and Hnorm/Hmax

norm saturates to the
final stable value in an early time, so in practice, we set a smaller t0
with the increase in χN.

III. RESULTS AND DISCUSSION
For the assessment of our scheme, we first compare the result

of Onsager coefficient ΛML extracted using the present method and
that from several other models. Figure 5(a) presents the Onsager
coefficients as a function in Fourier space, and q = 2πk/Lz, where
k is an integer. For the Debye model,14 we take ΛDebye

= gAA − gAB,
and gαα(q) = gD( f , x), gAB =

1
2 [gD(1, x) − gD( f , x) − gD(1 − f , x)],

where x = q2R2
g, gD( f , x) = 2

x2 ( f x + e− f x
− 1) is the Debye func-

tion,34 with f being the fraction of block α. The mixed scheme
is a variant of that proposed by Qi and Schmid,12 where incom-
pressible conditions are imposed to get an analytical equation,
and the corresponding Onsager coefficient in Fourier space is
written as

Λmixed
(q) = GAA(q) −GAB(q) +

1
2
−

1
2

Ξ(q). (8)

Here, Ξ(q) is the predefined filter function expressed in real space
as Ξ(r) = (2πξ2

)
−3/2 exp (−r2

/2ξ2
), which is used to separate the

thermodynamic forces into a “coarse-grained” nonlocal part and
a “fine-grained” local part, and ξ is a tunable parameter control-
ling the length scale to crossover between local (ΛLocal

(∣r − r′∣)
= 0.5δ(∣r − r′∣)) and nonlocal Debye dynamics. In terms of the filter
function, Gαβ reads Gαβ(∣r − r′∣) = ∫ dr′′gαβ(∣r − r′′∣)Ξ(∣r′′ − r′∣). It
is obvious that as ξ approaches zero, the filter function Ξ(r) becomes
the delta function, meaning that on all length scales the dynamics are
coarse grained, and the mixed model recovers the Debye description.
On the other limit, when ξ is very large, Ξ becomes wide and small,
and Λmixed

(q)→ 0.5, and then local dynamics dominants (see Fig.
S1 in the supplementary material). This shows the strong ability for
the mixed model to describe the local movement of monomers and
diffusion of the whole chain given that ξ is properly set, which is nor-
mally difficult as it depends on particular polymer systems. The data
of the Onsager coefficient from the RTA, i.e., ΛRTA, are taken from
the work of Mantha et al.25 under the same parameters (see Sec. S2.1
of the supplementary material for more detail). It has a finite value at
q = 0 indicating the existence of finite time for long-wave composi-
tional fluctuations. In contrast, the mixed and Debye models predict
the divergence of relaxation time.25

The Onsager coefficient obtained from machine learning is
close to that of the Debye model at large q and increases faster when q
becomes smaller, leading to ΛML

(q = 2) > ΛDebye
(q = 2). However,

the value of ΛML at q = 0 cannot be obtained by the present machine
learning scheme because the data fitting fails to work at q = 0 as the
dynamic equation [Eq. (3)] gives no restriction on ΛML

(q = 0). The
tendency of the profile of ΛML approaching q = 0 can be predicted
by taking a smaller Δq = 2π

Lz
, i.e., considering a system with a larger

size Lz, which is not studied here.
We also plot in Fig. 5(b) the Onsager coefficients in real space,

transformed by using fast Fourier transforms from those in Fourier
space, in order to have a direct impression of the form of nonlocal
correlations. Still, the profile of ΛML is quite close to that of ΛDebye,
except that ΛML has the freedom of a vertical shift as ΛML

(q = 0)
has not been determined. The ΛRTA decreases non-monotonically
to zero with increasing the distance, which is expected, since ΛRTA

calculated through all monomer positions characterizes the struc-
ture of the copolymer chains in the homopolymer state. Differing

FIG. 5. Onsager coefficient obtained by using different methods as denoted in Fourier space (a), real space (b), and the evolution of maximum density difference during
the phase transition process predicted by BD simulations and DDFT with different forms of the Onsager coefficient (c). The cyan line in panel (c) is the result from
the BD simulations. Herein, the incompatibility parameter is set to χN = 12, and in the mixed scheme, we choose ξ = 0.5 and ΛLocal = 0.5δ(∣z − z′∣). Λ is defined as
Λ = ΛAA − ΛAB.
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from ΛRTA, ΛML decreases monotonically, although ΛML also explic-
itly considers all monomer positions. The difference between ΛML

and ΛRTA may imply that the Onsager coefficient strongly depends
on the state of the system in the transition processes, a homoge-
neous treatment of the system could result in large deviations in the
Onsager coefficients from true ones.

By inserting these Onsager coefficients back into the dynamic
density functional equation, we can get the density evolution. To
quantify the phase transition process from a homogeneous state to
the lamellar state, we focus on the evolution of the density max-
imum, which is defined as ϕmax

≡ ϕmax
A − ϕmin

B . Figure 5(c) shows
ϕmax as a function of times, and for comparison, the result from
pure BD simulations is also plotted. Please note that as the machine
learning only considers some parts of the evolution trajectories later
than t > τ, we discard density evolution earlier than t = τ. With the
passage of time, all models predict that ϕmax saturates to the same
equilibrium value, but they have different rates of ordering. The
local dynamics, which emphasizes local arrangements, overestimates
the phase ordering speed, while the Debye dynamics, which mainly
represents the large-chain behavior, underestimates the ordering
rate.9,12 For the mixed model at ξ = 0.5, the ϕmax grows still faster
compared to the BD simulation result, indicating improper interpo-
lating between the local and Debye dynamics. A nice match between
the mixed model and the BD simulations can be expected when ξ
decreases to a sufficiently small value. Compared to the machine
learning method, the RTA overestimates the phase transition rate,
which again demonstrates that to obtain a more exact Onsager coef-
ficient, one has to consider the polymer conformations during the
phase transitions.

To further investigate the influence of the transition trajectories
on the Onsager coefficient, we vary the Flory–Huggins parameter
χN and calculate the corresponding ΛML in each case. Depending
on χN, the final equilibrium lamellar phases are different, for exam-
ple, they have different interfacial widths, although initiated at the
same homogeneous state. This means that for different χN, chain
conformations and bond ordering extent are different when the
systems have evolved the same time duration representing diverse
transition trajectories. Our scheme effectively takes into account the
transition trajectories by sampling the system for machine learn-
ing in a short time interval during the transitions rather than
only considers the chain conformations at the initial homogeneous
states.

Figure 6 shows the profiles of the Onsager coefficient in Fourier
and real space with varying χN. Differences are obviously seen in
the profiles of Λ for different χN. In general, with the increase in
χN, ΛML becomes larger almost for each mode q, which suggests
that the mobility of the polymer chains at different length scales is
all enhanced under deeper quench. This matches the general idea of
critical slowing down, as inversely when χN decreases to approach-
ing the critical point (the exact location of the critical point is not
identified), the chain mobility becomes weaker and tending flatter
[see Fig. 6(a)]. In real space, as shown in Fig. 6(b), Λ(z) becomes
thin and sharp as χN increases, which illustrates strong correlations
at short lengths. This is consistent to the fact that the interfacial
length is small for a large χN (see Fig. 7). It should be noted that
due to undetermined vertical shift, the absolution value of Λ(z)may
not be trustable. Still, the strong dependence of Λ over χN confirms

FIG. 6. Onsager coefficient Λ obtained by the present machine learning scheme
represented in Fourier space (a) and real space (b) for several chosen χN as
denoted.

FIG. 7. Interfacial width W as a function of time in double-logarithmic represen-
tation, as obtained by the BD simulation (solid lines) and DDFT models (dashed
lines) with the Onsager coefficient given by the machine learning scheme for dif-
ferent χN. In particular, the values of χN are 12, 12.4, 13, 14, 15, 17, and 20,
respectively. The power law W ∝ t−2 is shown as a guide for the eye in the plots.

the necessity of involving transition trajectories when calculating the
Onsager coefficient.

As a simple application, we use the present scheme to study the
process of interfacial narrowing during phase transitions. After the
quench, polymer chains gradually move to form monomer A rich
and B rich regions from randomly distributed state at the start, and
the density profile changes from flat to curved with a sharp change
of the density value at the interfacial regions. To quantify the inter-
facial region, we define the interfacial width W as the inverse of the
maximum slope of the density profiles ϕA, which is located at the
center of the interface regions (other definitions are possible, but the
results qualitatively hold).12 Figure 7 shows the change of interfacial
width W as a function of time for different χN parameters obtained
by both BD simulations and DDFT method. In the DDFT scheme,
the Onsager coefficients were extracted by the fitting the BD data
within a short time interval. The starting point t0 and the dura-
tion Δt of the time interval depend on the parameter χN; roughly
speaking, it spans about 1/4 of the region where the interfacial width
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FIG. 8. (a) Numerical fitting of the learned Onsager coefficient in real space. The
data (solid lines) are fitted to a stretched exponential function (dashed lines),

Λ(Δz) = a0 exp(−( Δz
r0
)

β0
), with length scale r0 and stretching parameter β0.

(b) Effective correlation length reff and the interfacial width W as a function of the
incompatibility parameter χN.

changes dramatically. For example, in the case of χN = 12, we set
t0 = 1τ, and the time interval ranges from t = 1τ to t = 2τ, and for
χN = 20, t0 = 0.175τ and the time duration for sampling Δt = 0.1τ.
The curves show that except for the early times and the saturat-
ing stage, the decrease in W for different χN follows an apparent
scaling relation W(t) ≈ ta at the intermediate times with the expo-
nent α ≈ 2.0. Although ΛML in the DDFT is obtained from limited
amount of data sampled in early times, they correctly predict the
evolution of systems afterward. This can be confirmed from Fig. 7
that the evolutions of W with respect to time from the pure BD sim-
ulation and the DDFT scheme almost overlap each other for each
given χN. We will come back to discuss the influence of t0 and time
duration later.

From the Onsager coefficient, we can learn further informa-
tion about the correlation in the system, and we call such correlation
the dynamic correlation as it specifies a region within which a ther-
modynamic force can induce a flow. Normally, with respect to the
distance, the strength of correlation exhibits a decay, so to model
such decay, we introduce a “stretched” exponential function, which
has the form of Λfit

(z) = a0e−(z/r0)β0 . Here, a0 is a prefactor, r0
represents a characteristic length scale, and β0 describes the devia-
tion of the correlation function from exponential decay. We obtain
these parameters by fitting the data ΛML to Λfit in real space. From
the correlation curve, we calculate an effective correlation length
reff = a−1

0 ∫
∞

0 dzΛfit(z) = r0
β0

Γ(1/β0),81 Γ being the gamma function.
From Fig. 8(a), we see that in a wide range of χN, ΛML fits reasonably
well to Λfit.

Figure 8(b) shows the effective correlation length reff as a func-
tion of the incompatible parameter χN, and for comparison, the data
of interfacial length W are also presented. It can be seen that the
effective correlation length is comparable with the interfacial width
in order of magnitude, although the concrete value of W depends
on its definition. In addition, reff is smaller than the mean radius
of gyration of the polymer Rg. However, with the decrease in χN,
reff grows fast, and it is conceivable that reff becomes larger than Rg,
when the system is close enough to the critical point. Similar to the
case of W, with the increase in χN corresponding to a deeper quench,
the correlation length becomes smaller. This indicates that far from

FIG. 9. (a) Onsager coefficient ΛML expressed in Fourier space for different training
time windows. The inset gives the corresponding plots of ΛML in real space. (b) The
time evolution of the maximum density ϕmax depicted according to BD simulations
(cyan line) and DDFT calculations with various training time windows as indicated.
The color coding in panel (b) also refers to panel (a).

the transition point, the influence of external forces becomes local-
ized but strong, i.e., only chains nearby move fast. On the contrary,
approaching the transition point, the thermodynamic force could
inspire the movement of chains in a long distance away, but the
response is weak, so they move slowly. We expect that such fea-
tures of the dynamic correlations may have consequences on the
transition paths under different conditions, which require further
investigations.

For all χN that we have considered (i.e., 12 ≤ χN ≤ 20), the
stretching parameter β0 is found to range between 1 and 2 with no
monotonic dependence on χN (see Table S1 of the supplementary
material for the values of β0). The parameter β0 larger than one
means that the dynamic correlation decays faster than the sin-
gle exponential form, which is also consistent to the fact that
reff < r0. The short-ranged type of correlations between thermody-
namic forces and flows may originate from the BD description of
the polymer chains, where long-ranged hydrodynamic interactions
are not involved.

As we have mentioned before, to extract the Onsager coeffi-
cient, we sampled the density obtained by BD simulations within
a short time interval between t0 and te, where t0 and te depend on
χN, and Δt = te − t0 approximately covers 1/4 of the sharp phase
transition region. Now, we discuss the effect of t0 and te on ΛML

and the density evolution. As an example, we consider the case of
χN = 12, and in previous calculations, we have chosen t0 = 1τ and
te = 2τ. For comparison, we choose another two sets of parameters,
and for the first set t0 = 1τ and te = 4τ meaning a longer sampling
duration, while the other set t0 = 2τ and te = 3τ corresponding to a
different starting time. We plot the profiles of ΛML as a function of
q and z (the inset) for these different training time windows shown
in Fig. 9(a). These curves in Fourier and real space nearly completely
coincide with just minor deviations. It should be noted that ΛML def-
initely has a close relation with the sampling window, for example,
ΛML would have a different form if one samples the densities in a
time interval with t0 and its width approaching zero, i.e., near the
initial homogeneous state. However, our study demonstrates at least
that there exists a short time window within which the evolution of
densities can generate an Onsager coefficient of high accuracy and
stability.
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Next, we solve the dynamic density evolution equation by
inserting these Onsager coefficients into the dynamic equations and
obtain the growing of ϕmax from the initial homogeneous state to
the final lamellar phase. Figure 9(b) shows the profiles of ϕmax

with respect to time for pure BD simulations and DDFT. The
curves corresponding to different sampling intervals almost get
overlapped, and they also reproduce well the results from BD sim-
ulations. Thus, besides the fact that these Onsager coefficients do
not depend on the initial time and the size of the sampling time
intervals, they can also correctly describe the dynamic propagation
of polymer chains, which confirms the robustness of our machine
learning scheme.

In addition, Fig. 9 shows that our machine learning scheme
could be more efficient than the pure BD simulations while still
at the same level of accuracy. In general, particle-based BD sim-
ulations are time consuming, as the polymer systems, especially
polymer melts, contain quite a large number of monomers, and
dealing with all these monomers takes a lot of time. On the other
hand, the DDFT runs fast, as the time cost there is solely relevant
to the total number of cells that the system partitions to, which
is normally not that large, for instance, in a one-dimensional sys-
tem. If we construct the Onsager coefficient from BD simulations
but within a short time interval, and then perform DDFT calcula-
tions instead, we can reach a high performance modeling with high
accuracy and efficiency. The speedup could be one or two orders of
magnitude (see Sec. S5.5 of the supplementary material for further
information).

IV. SUMMARY AND REMARKS
To summarize, in the present work, we have proposed a

bottom-up scheme to give an explicit expression for the Onsager
coefficient within the DDFT framework. Our scheme relies on the
mapping from the particle-based trajectories (obtained by sepa-
rate BD simulations) to the propagation of density fields, which
is accomplished through a DDFT-informed machine learning neu-
ral network. To exemplify the application of our scheme, we focus
on the phase transition of a symmetric diblock copolymer system
from the initial homogeneous state to the final lamellar phase after a
quench, and have mainly the following conclusions:

● The dynamic density functional equation with the Onsager
coefficient extracted from the BD data can reproduce rea-
sonably well the evolution of polymer densities as well
as the narrowing of the phase interfaces predicted by the
pure BD simulations during the phase transition process
demonstrating the accuracy of the obtained Onsager coef-
ficient and the reliability of the conducted machine learning
procedure.

● As the particle moving trajectories with a time intervals
are considered, our scheme captures at least partially the
process-dependent nature of the Onsager coefficient. This
matches the result that the expression of the Onsager coef-
ficient depends strongly on the quench depth χN, which
controls the transition path.

● In addition to the diffusivity, which is represented by the
magnitude of the Onsager coefficient, the range where a
thermodynamic force inducing a diffusive flux, which is

quantified by the correlation length, can be obtained by fit-
ting the Onsager coefficient to a given form of correlation
function. By doing so, we reveal the dynamic coupling prop-
erties of the polymer systems under different conditions.
For example, when the system is far from the transition
point, the influence of external forces becomes localized but
strong, while close to the transition point, the association
of the thermodynamic force covers a large range but weak.
We expect that the analysis of these dynamic correlation
functions would help specify the transition path ways.

Although the present studies focused on the order–disorder
transition of a simple diblock copolymer melt, it is straightforward
to extend our scheme to study the dynamic processes of more com-
plex systems. The obtained explicit form of the Onsager coefficient
would help understand the connection between the microscopic
structure of the polymer chains, external controlling conditions,
and the real transition path ways between different phases. In addi-
tion, to decrease the number of free variables and to ease the
machine learning treatment, we have imposed the incompressible
condition, which is in fact not a principle requirement by the
scheme. The current BD simulations deal with compressible systems
with the compressibility characterized by the Helfand parameter
κ, and we have set κN = 10 in the simulations reflecting moder-
ately compressible situations. The incompressible condition corre-
sponds to the limiting case in the BD simulations when κ increases
to infinity.

The Onsager coefficient extracted by the present scheme does
not explicitly depend on time. However, in practice, phase transi-
tions represent a nonequilibrium process, and the evolution of mor-
phologies may strongly depend on the history of the self-assembly.
This means that the Onsager coefficient should be a function of
both positions and time. In the present study, the Onsager coef-
ficient shows no clear associations with the time intervals chosen
for data sampling, which may indicate that the memory effects are
not that crucial here or they are averaged out in some way.25 We
believe that memory effects are important in determining dynamic
processes and the simulation study here provides a basic step for the
further improvement of machine learning schemes to involve the
time correlations in the Onsager coefficient.

Our approach establishes a direct linkage between particle sim-
ulations and field-based models. Field-based models primarily focus
on the dynamics of collective variables within the system (e.g.,
density), thereby offering a more direct and effective description
of the system’s long-term structural evolution at the mesoscopic
scale. These models are highly dependent on the characterization of
the system’s microscopic details, such as the topological structures
of chains and transport coefficients of the monomers. However,
these coefficients are typically derived through theoretical meth-
ods under specific physical conditions, where the approximations
employed during the derivation are often excessively simplified. As
a result, the Onsager coefficients derived from theoretical methods
may not accurately reflect the microscopic transport behaviors of
systems, leading to significant discrepancies in the dynamic pro-
cesses and structural evolution pathways, or even errors. To address
this issue, our research presents an effective computational frame-
work that directly derives the relevant dynamic coefficients from
particle simulation trajectories. This not only mitigates the flaws
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inherent in traditional theoretical derivations but also provides new
insights into dynamics. Similarly, this methodology can be applied
to connect other scales, paving the way for the future use of multi-
scale simulations to study more complex nonequilibrium dynamical
problems.

SUPPLEMENTARY MATERIAL

The supplementary material is available free of charge and
includes the methods of SCFT, DDFT, BD simulation, and machine
learning.
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S1 Self-Consistent Field Theory

In this study, we employ the self-consistent field theory (SCFT), which is one of the most

powerful equilibrium theories for inhomogeneous polymer systems,1,2 to construct the free

energy functional in DDFT equations. In this section, we briefly summarize the main equa-

tions adjusted to our system.

The system with a volume V contains n monodisperse chains of symmetric AB diblock

copolymers with an average monomer density ρ0 and total polymerization N = NA + NB.

The block copolymers are modeled as continuous Gaussian chains3 with the contour length

parameterized by the continuous variable s, which ranges from 0 to 1, and the interactions

between the A and B components are modeled by the combined Flory-Huggins parameter

χN . Therefore, the dimensionless free energy functional F{ϕα(r)} in units of thermal energy

kBT can be expressed as.2

F =
ρ0
N

{∫
dr[χNϕA(r)ϕB(r)]−

∑
α=A,B

∫
drϕα(r)ωα(r)− V lnQ

}
(S1)

where ϕα and ωα represent the normalized density field and conjugate field of monomer α,

respectively, and Q is the single chain partition function.

The conjugate fields ωα can be calculated through the implicit relationship

ϕα(r) =
NαV

NQ

∫ 1

0

dsq(r, s)q′(r, 1− s)δα,τ(s) (S2)

where τ(s) describes the monomer sequence on chain. q (r, s) and q′ (r, s) are partial partition

functions that satisfy the diffusion equation

∂q (r, s)

∂s
= R2

g∇2q (r, s)− ω (r) q (r, s) (S3)

with initial condition q(r, 0) = q′(r, 0) = 1 and ω(r) = ωA(r) or ωB(r) based on the parameter

3



s. q(r, s) is obtained by setting ω(r) = ωA(r) for s < NA/N and ω(r) = ωB(r) otherwise,

Conversely, q′(r, s) is defined by setting ω(r) = ωB(r) for s < NB/N and ω(r) = ωA(r)

otherwise.

The calculation of the single chain partition function Q is then accomplished by

Q =
1

V

∫
drq(r, 1) =

1

V

∫
drq′(r, 1) (S4)

More details and the derivations of above equations can be found, e.g. in refs 1, 4 and

5.

At equilibrium, the free energy functional F{ϕα(r)} reaches its minimum with respect to

the density fields ϕα(r), leading to a second set of conditions for the values of the conjugate

fields ωα

ωSCF
A (r) = χNϕB

ωSCF
B (r) = χNϕA

(S5)

However, in DDFT calculations, these conditions are not imposed. Instead, the system

is dynamically driven toward the equilibrium state via the diffusive dynamical eq. 2 with

µ(r) = µA(r)− µB(r) = (ωSCF
A (r)− ωA(r))− (ωSCF

B (r)− ωB(r)).

In the present work, the SCFT calculations are effectively one-dimensional, that is, we

assume that densities vary only in the z-direction. And, the conjugate fields, eq. S2. is

solved using the pseudo spectral scheme2 with discrimination ∆s = 0.01.
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S2 Dynamic Density Functional Theory

S2.1 Schemes for Onsager coefficient

For melts in the Rouse regime (i.e., non-entangled chains), four types of Ansatz for the

Onsager coefficient Λ(r, r′) in eq. 1 have been proposed in the literatures:

(i) Local Coupling Scheme: Here, monomer beads are assumed to diffuse independently

of each other with the mobility D0.6 This leads to the following expression for Λαβ(r, r
′)

ΛLocal
αβ (r, r′) = D0ϕα(r)δαβδ(|r− r′|) (S6)

Thus, for our system, the Onsager coefficient of local scheme in eq. 2 is

ΛLocal(|r− r′|) = 1

2
D0δ(|r− r′|) (S7)

(ii) Chain Coupling Schemes: They assume that the polymer chains diffuse as a whole

with mobility, Dc = D0/N . For this case, Maurits and Fraaije have derived the expression7

ΛChain
αβ (r, r′, t) = DcPαβ(r, r

′, t) (S8)

where Pαβ(r, r
′, t) is the pair correlation of monomers α and β on the same chain at position

r and r′. Pαβ is further approximated by the pair correlations of ideal Gaussian chains,

known as the Debye correlation function8

ΛDebye
αβ (r, r′) = Dcgαβ(|r− r′|) (S9)
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Analytical expressions of gαβ(|r−r′|) are available for the Fourier representation gαβ(q). For

example, for diblock copolymers one obtains2,9

gaa(q) = NgD(fa, x)

gAB =
N

2
{gD(1, x)− gD(fA, x)− gD(fB, x)}

(S10)

where x = q2Rg, fα is the volume fraction of block α, and gD(f, x) =
2
x2 (fx + e−fx − 1) is

the well-known Debye function.

Consequently, the Onsager coefficient of Debye scheme in eq 3 under our system is

ΛDebye(q) = 2NDcgD(
1

2
, x)− 1

2
NDcgD(1, x) (S11)

(iii) Mixed Coupling Schemes: The prediction of local and nonlocal schemes have shown

to underestimate and overestimate the ordering time, respectively, when compared to simu-

lations.10,11 Thus, the mixed scheme is proposed,11 which assumes simultaneously dynamics

governed by a local mobility function at short wavelengths and a nonlocal one at large wave-

lengths, by introducing a filter function Ξ(r) to filter out the long-wavelength part of the

thermodynamic driving force

fNonlocal
α (r) = −

∫
dr′Ξ(|r− r′|)∇µα(r

′) (S12)

with

Ξ(r) = (2πξ2)−3/2 exp

{
−r2

2ξ2

}
(S13)

Therefore, the remaining part is short wavelengths of force that drive local rearrangements

of the chain.

fLocalα (r) = −∇µα(r)− fNonlocal
α (r) (S14)
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The resulting mixed scheme has the form

∂ϕα(r, t)

∂t
= −∇

∑
β

∫
dr′

[
ΛNonlocal

αβ (r, r′)fNonlocal
β (r′) + ΛLocal

αβ (r, r′)fLocalβ (r′)
]

(S15)

where ΛNonlocal can be any of the chain coupling schemes discussed above. In the main text,

we use Debye scheme as a nonlocal mobility function as in ref 11.

Then, we can conveniently rewrite the mixed scheme (eq. S15) in the form of eq. 1

∂ϕα(r, t)

∂t
= ∇

{∫
dr′ (δ(|r− r′|)− Ξ (|r− r′|))ϕα∇µα(r

′, t)

+
∑
β

∫
dr′Gαβ(|r− r′|)∇µβ(r

′, t)

} (S16)

with

Gαβ(|r− r′|) =
∫

dr′′gαβ (|r− r′′|) Ξ (|r′′ − r′|) (S17)

Therefore, for our incompressibility system, the evolution of the density ϕ can be calcu-

lated under the form of eq. 2 by the following equation

∂ϕ(r, t)

∂t
= ∇

∫
dr′ΛMixed(|r− r′|)∇µ(r′, t) (S18)

with

ΛMixed(|r− r′|) = GAA(|r− r′|)−GAB(|r− r′|) + 1

2
δ(|r− r′|)− 1

2
Ξ(|r− r′|) (S19)

The tunable parameter ξ in Ξ(|r−r′|) term determines the length scale of crossover between

the local and the Debye dynamics. Figure S1 illustrates the impact of the tunable parameter

ξ on ΛMixed in Fourier space. When ξ = 0, ΛMixed = ΛDebye, and as ξ → ∞, ΛMixed = ΛLocal.

In the main text, the tunable parameter is set to ξ = 0.5Rg, as optimized in previous work.11

(iv) Relaxation Time Scheme: Mantha et al. 12 propose to estimate Onsager coefficient
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Figure S1: Influence of the tunable parameter ξ on ΛMixed in Fourier space

directly from the characteristic relaxation time of the single chain dynamic structure factor

g(q, t) = 1
N
⟨
∑N

m,j=1 e
iq·(Rm(t)−Rj(0))⟩, where Rj(t) is the position of monomer j at time t.

Knowing g(q, t), the rescaled single-chain mobility in Fourier space is

ΛRTA(q) =
1

kBTq2N
G−1(q)g(q, 0) with

G(q) =

∫ ∞

0

dtg(q, t)g−1(q, 0)

(S20)

In the case of symmetric diblock copolymers with fully equivalent A and B blocks, the

Onsager coefficient is then given by

ΛRTA
AA (q) =

1

4kBTq2N

(
g(q, 0)

τR
+

∆(q, 0)

τ∆

)
ΛRTA

AB (q) =
1

4kBTq2N

(
g(q, 0)

τR
− ∆(q, 0)

τ∆

) (S21)

where ∆(q, t) = gAA(q, t) + gBB(q, t)− gAB(q, t)− gBA(q, t) and τ∆ = 1
∆(q,0)

∫∞
0

dt∆(q, t).

Then, for our system, the Onsager coefficient of relaxation time scheme is

ΛRTA(q) =
2∆(q, 0)

4kBTq2Nτ∆
(S22)
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where the structure factor g(q, t) is obtained through Brownian dynamics at χN = 0.12

S2.2 Settings of DDFT calculation

In practice, the DDFT calculations are carried out in one dimension, since we are only

concerned with the lamellar morphology in the z direction. As in earlier work,11,12 the time

step depends on the DDFT scheme. We use dt = 10−5τ for the local dynamics model,

dt = 10−4τ for the Debye and relaxation time dynamics models, and dt = 10−6τ for the

mixed dynamics model.

S2.3 Influence of the absence of wavenumber |q| < 2 in Λ(q, t) on

Λ(|z − z′|, t)

For our system, the ΛML(q, t), obtained by machine learning, actually lacks the values for

wavenumbers |q| < 2 in Fourier space. In this section, we will demonstrate through testing

with ΛDebye that the absence of values for |q| < 2 does not significantly affect the Onsager

coefficient in real space.

To fully illustrate this, we respectively selected ΛDebye (Figure S2a), where ΛDebye(q =

0) = 0, and ΛDebye
AA (Figure S2c), where ΛDebye

AA (q = 0) ̸= 0, for testing by varying the box

size Lz. The box size Lz = 3Rg was used in the main text. As Lz increases, the spacing of q

decreases, resulting in multiple values in |q| < 2. However, for both ΛDebye (Figure S2b) and

ΛDebye
AA (Figure S2d), there is no significant change for the Onsager coefficient in real space.

9


(a) (b)

(c) (d)

Figure S2: Influence of the spacing of q in Fourier space (a, c) by changing the box size Lz

on the Onsager coefficients ΛDebye (b) and ΛDebye
AA (d) in real space.
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S3 Brownian Dynamics Simulations

S3.1 Simulation method

In this section, We briefly describe the Brownian dynamics (BD) simulations, referred to as

fine-grained simulation. Due to our aim of extracting parameters from particle-based models

to reproduce the dynamical properties on the basis of the field-based model, we employ an

Edwards-type model,13–15 whose static equilibrium properties are well-reproduced by density

functional theory with minimal parameter adjustment.11

In our study, we consider melts comprising nc = 5000 block copolymers, each with a

chain length N = 40, containing NA = 20 beads of type A and NB = 20 beads of type B,

with mobility Dc = D0/N in a box of volume V = Lx ·Ly ·Lz = Rg×Rg×3Rg with periodic

boundary. The average monomer density is thus ρ0 = ncN/V .

The interactions of the Edwards-type model, expressed in terms of local densities,15 are

described by the Hamiltonian Henergy, which is given by11

Henergy =
N

4

nc∑
m=1

N∑
j=1

(
Rm,j −Rm,j−1

)2
+ ρ0χ

∫
drϕ̂A(r)ϕ̂B(r)

+ ρ0κ

∫
dr

(
ϕ̂A(r) + ϕ̂B(r)− 1

)2
(S23)

The first term represents the bonded interactions within the polymer, while the subsequent

terms correspond to nonbonded interactions with the Flory-Huggins interaction parameter χ,

which controls the incompatibility between A and B monomers, and the Helfand parameter

κ, which controls the compressibility. The Rm,j is the position of the j-th bead of m-th

chain, and the ϕ̂α(r) is the normalized microscopic densities of α-type beads (α = A or B)

at position r, defined as,

ϕ̂α(r) =
1

ρ0

∑
mj

δ
(
r−Rmj

)
δα,τmj

(S24)
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where τmj = A or B characterizes the monomer sequence on chain m. In practice, the local

densities are evaluated on a grid of size ∆x = ∆y = 0.1Rg and ∆z = 0.0468Rg, using a

first-order cloud-in-cell (CIC) scheme,16 where beads influence the densities at the nearest

eight mesh points. Further insights on the CIC method in BD simulations can be found in

ref. 11.

The motion of a BD bead is governed by deterministic conservative forces derived from

the Hamiltonian, as well as stochastic forces. These forces are mathematically expressed as:

dRm,j

dt
= −D0

∂Henergy

∂Rm,j

+
√

2D0fm,j (S25)

where the random force fm,j is Gaussian distributed random noise with zero mean and

variance ⟨fmjI(t)fnkJ(t
′)⟩ = δmnδjkδIJδ(t− t′), where I, J denote the Cartesian components.

The BD equation is a stochastic differential equation, and it is integrated using the explicit

Euler-Maruyama method17 with a time step of dtBD = 0.001τ/N (i.e. dtBD = 2.5× 10−5 at

N = 40). For a detailed theory and setup of Brownian dynamics simulations, we refer to

refs. 11 and 12.

In particle, the Flory-Huggins interaction parameter is set to χN = 12 ∼ 20 and the

Helfand parameter is set to κN = 10. And we initialize the system by imposing weakly

inhomogeneous density distributions and monitor the evolution of the density profile ϕ until

it is equilibrated.

S3.2 Influence of compressibility parameter on density

Figure S3 shows the results of BD simulations at different κN . When κN is within a relatively

small range, the density is not significantly affected by κN . However, high κN ≥ 500, the

interactions in the BD simulations are significantly altered, preventing the formation of

lamellar morphology. Therefore, despite assuming incompressibility in our main text, we

still generated data using κN = 10 and then used eq. 4 in main text to enforce density

12



incompressibility.

(a) (b) (c)

Figure S3: Results of BD simulations with different compressibility parameter κN by using
cloud in cell method. (a) The time evolution of the maximum density of A-monomers ϕmax

A .
(b) Density profiles ϕα of A-monomers and B-monomers at equilibrium. (c) Total Density
profiles ϕA + ϕB at equilibrium

In addition, the evolution of density profiles at χN = 12 and κN = 10 with the cloud in

cell method is shown in Figure S4.

t

Figure S4: Evolution of density profiles ϕ(z, t) at χN = 12 and κN = 10 with cloud in cell
method.
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S4 Coarse-grained Density Fields

S4.1 Kernel coarse-graining with periodic boundaries

To coarse-grain the discrete microscopic data through main text eq. 4, we used a 3D Gaussian

kernel

K(x, y, z) =
1

(2π)
3
2σ3

exp

(
−x2 + y2 + z2

2σ2

)
(S26)

Meanwhile, periodicity of the coarse-grained fields for the microscopic data was ensured

by placing ghost particles periodically around the domain.

S4.2 Independence of Gaussian kernel width σ on the density

fields

To demonstrate that the obtained density fields are not influenced by the Gaussian kernel

width σ in the particle-to-field convolution with a kernel method (section Particle-to-field

transformations in the main text), we selected several similar σ values within the plateau

H(σ). Following the steps outlined in section Particle-to-field transformations of the main

text, we obtained the density fields, shown in Figure S5, at χN = 12. Our results indicate

that the resulting density fields are unaffected by the choice of Gaussian kernel width σ.
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(a) (b) (c)

(d) (e) (f)

Figure S5: Evolution of density fields ϕ(z, t) with different Gaussian kernel width σ in the
plateau H(σ) at different time.
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S5 Machine Learning Methods

S5.1 Architecture of the DDFT-Informed ODE Net

The DDFT-Informed ODE Net (DIO Net), inspired by DDFT, comprises two sub-networks,

i.e., ODE net and Neural Net, which in general can have different structures (see Figure 1).

In the ODE Net, There are nq small networks, each of which extracts the time partial

derivative of the density under different Fourier bases, ∂tϕML(q, t), due to the independence

of density evolution with respect to q as implied by eq. 3 in the main text. In our model,

nq is chosen from 8 to 12, and it has been verified that increasing nq beyond this range does

not impact our results. Each of these small networks consists of two hidden layers, each

containing 5 nodes activated by ELU functions, in addition to single-node input and output

layers. We have verified that the machine learning results remain consistent when using

different activation functions, such as a tanh function. It is important to note that these

nq small networks do not share parameters (weights and bias). In principle, we could train

similar networks in real space to obtain the time partial derivative of the density. However,

in practice, we find that using networks with a small number of free parameters in Fourier

space significantly enhances training efficiency without sacrificing model compatibility and

predictive power. In general, the number of free parameters can be minimized by considering

the properties of the physical system, while networks with redundant parameters can work

equally well if proper regularization is imposed.18

Simultaneously, another Neural Net, consisting of an input layer and an output layer with

a single node, as well as two hidden layers containing 50 nodes each, is utilized to learn the

Onsager coefficient ΛML(q). Both the time partial derivative of the density ∂tϕ
ML(q, t) and

the Onsager coefficient ΛML(q) are transformed into real space via fast Fourier transforms

and are coupled through the DDFT equations (eq. 2 in main text).
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S5.2 Training the DDFT-Informed ODE Net

We use the ODE Net to find the time partial derivative of the density by employing the

adjoint sensitivity method.19 This involves the minimization of the error, which measures

the accuracy of the learned dynamics, at discrete-time points ti+j with j = 1, 2, . . . , nt and

at an arbitrary time ti ∈ [t0, te], between the ODE Net predictions ϕ̂(r, t) and the set of

observation data ϕ(r, t) using e.g., the mean absolute error,

lossODE =
1

Ntnt

Nt∑
i=1

nt∑
j=1

(∣∣ϕ̂i,j(r, t)− ϕi,j(r, t)
∣∣) (S27)

The selection of nt may influence the final outcomes. When nt is very small, especially

when nt = 1, due to the small density variation and the high noise in particle simulation,

the model may result in a trivial solution ∂tϕ
ML(r, t) = 0.20 Conversely, when nt is very

large, especially when nt = Nt, it substantially slows down the model training process.19,20

Therefore, in this paper, we choose nt ≈ Nt/6, which balances the training performance and

ensures high accuracy.

The neural network extracts the Onsager coefficient Λ(|r − r′|) from the time partial

derivative of the density by minimizing the loss of the DDFT equations,

lossDDFT =
1

Nt

Nt∑
i=1

∣∣∣∣∂tϕ̂(r, ti)−∇
∫

dr′Λ(|r− r′|)∇µ(r, ti)

∣∣∣∣ (S28)

where µ(r, t) is the chemical potential, obtained using the SCFT method1 with ϕ(r, t).

The total loss is then

loss = lossODE + ηlossDDFT (S29)

where η is a parameter to balance the accuracy of the learned dynamics and the error from

DDFT. In our computation, we first train the loss function with η = 0 to obtain the time

partial derivative of the density. After some training steps, we set η = 1 to obtain the
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Onsager coefficient and fine-tune the parameters of the ODE Net, since both losses are

equally important and are of the same order of magnitude (see Figure S6). In the future,

more schemes of adaptive loss balancing can be explored.21,22

We use the Adam optimizer23 for updating the network parameters. The learning rate

was set to decay by 0.8 if the loss did not decrease within 2,000 epochs, starting from an

initial value of 0.001, to obtain the optimal Onsager coefficient. Figure S6 shows the best

loss, lossODE, lossDDFT , and their corresponding learning rates over the training epochs for

the phase with η = 1. All code of the ML methods was implemented in python with the

PyTorch package.24

Figure S6: Learning curves as a function of the number of epochs for training data at
χN = 12. The black line indicates the best loss, which combines the lossODE (blue line)
and lossDDFT (cyan line). The red line represents the corresponding learning rate (lr).

S5.3 Making predictions using ΛML

Once well trained, we can obtain the Onsager coefficient ΛML(r, r′) from the DDFT-Informed

ODE Net. We incorporate the obtained ΛML(r, r′) into the DDFT equations and evolve from

initial time t0, which allows us to obtain the evolution of density fields under this ΛML(r, r′).

The time evolution of the maximum density for different χN is shown in the Figure S7,

demonstrating that our obtained ΛML(r, r′) can reproduce the density evolution process
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observed in particle simulations.

Figure S7: The time evolution of the maximum density ϕmax with different incompatibility
parameter χN as obtained from BD simulations and the DDFT models with ΛML.

S5.4 Additional results for numerical fitting

In addition to fitting Onsager coefficient at χN = 12 using the stretched exponential function

employed in the main text, we also attempted to fit it using other functions, as shown in Fig-

ure S8. The first function we tried was exponential function Λ(∆z) = a0 exp
(
−∆z

r0

)
, which

yielded poor fitting results. Additionally, we used double stretched exponential function,

Λ(∆z) = a1exp
(
−(∆z

r1
)β1

)
+ a2exp

(
−(∆z

r2
)β2

)
, for fitting and found that the r1 is similar to

r2, further demonstrating that a single stretched exponential function is sufficient to describe

Onsager coefficient.

In addition, the fitting parameter values of Λ(∆z) = a0 exp
(
−(∆z

r0
)β0

)
at different χN

are shown in Table S1.

S5.5 Speedup factor of DDFT simulations

Since our method can extract Onsager coefficients Λ from particle-based BD simulations to

reproduce the dynamic properties on the basis of field-based model, field-based models can
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Figure S8: Numerical fitting of the learned Onsager coefficient ΛML at χN = 12 in real space
with different equations. The parameters of Λ(∆z) = a1exp

(
−(∆z

r1
)β1

)
+ a2exp

(
−(∆z

r2
)β2

)
are r1 = 0.817, r2 = 0.868, β1 = 1.679 and β2 = −2.085, where ∆z = |z − z′|.

Table S1: Numerical fitting results of the learned Onsager coefficient in real space by using
Λ(∆z) = a0 exp

(
−(∆z

r0
)β0

)
χN r0 β0

12 0.824(9) 1.74(3)
12.4 0.749(4) 1.82(2)
13 0.668(6) 1.84(4)
14 0.646(9) 1.51(4)
15 0.629(2) 1.87(2)
17 0.574(8) 1.63(5)
20 0.497(4) 1.76(3)
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be directly used to simulate the evolution of density, thereby avoiding the time-consuming

BD simulation. Thus, our method can be used for simulation acceleration.

Figure S9 depicts the speedup ratios at different time steps for DDFT, dtDDFT. When

using the same time step as the BD simulation, i.e., dtDDFT = 0.001/Nτ , our current system

achieves nearly a 20-fold acceleration. Interestingly, as the time steps dtDDFT increase, the

speedup factor further increases, reaching up to nearly 450 times at dtDDFT = 0.01τ , while

the dynamic evolution remains consistent with the particle simulation (Figure S9a). Even

with a time step smaller than that of the particle simulation, i.e., dtDDFT = 10−5τ , it retains

an acceleration ratio of nearly 12 times.

Therefore, compared to particle-based simulations, field-based models with reasonable

parameters not only reproduce the dynamic properties of particle simulations but also offer

significantly higher acceleration.

(a) (b)

Figure S9: (a) The time evolution of the maximum density ϕmax with different time steps
for DDFT, dtDDFT. (b) Speedup factor of DDFT simulations at different time steps dtDDFT

compared to BD simulations with dtBD = 0.001/Nτ .
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