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ABSTRACT
We calculate the shape and the velocity of a bubble rising in an infinitely large and closed Hele–Shaw cell using Park and Homsy’s boundary
condition, which accounts for the change of the three dimensional structure in the perimeter zone.We first formulate the problem in the form
of a variational problem and discuss the shape change assuming that the bubble takes an elliptic shape. We calculate the shape and the velocity
of the bubble as a function of the bubble size, the gap distance, and the inclination angle of the cell. We show that the bubble is flattened as it
rises. This result is in agreement with experiments for large Hele–Shaw cells.
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I. INTRODUCTION

Motion of a bubble moving in a Hele–Shaw cell under grav-
ity is a classical problem first discussed by Taylor and Saffman,1 yet
there remains an unsolved problem. To make the discussion clear,
we restrict ourselves to the problem of an isolated bubble rising
under gravity in a closed and infinitely large Hele–Shaw cell. The
problem is how the shape of the rising bubble is determined.

Taylor and Saffman1 showed that the set of equations determin-
ing the shape and the velocity of the bubble in the steady state can
be solved analytically if the effect of surface tension is ignored. They
also showed that there are an infinite number of such solutions, and
further condition is needed to determine the shape uniquely. They
made a conjecture that determines the unique solution observed in
experiments, but they could not justify the physical or mathematical
origin of the conjecture.

Twenty seven years later, Tanveer2 showed that the degener-
acy of the Taylor–Saffman solution is removed if the surface tension
is accounted for, but there still remain multiple branches of exact

solutions.3 Furthermore, many other solutions have been found in
recent years.4–6

Experimentally, the multiplicity of the solutions is puzzling. It
has been observed that if the rising velocity U is small, the bub-
ble takes a circular shape, and with increasing velocity, the bubble
deforms to ellipse and cambered ellipse.7 Kopf-Sill and Homsy8
studied the bubble shape when various parameters, such as rising
speed, bubble size, and liquid viscosity, are varied. They have shown
that for a bubble rising in a large cell, the bubble shape changes from
circle to flattened ellipse (with the long axis perpendicular to the
moving direction), but no theory has been given to explain such a
shape change.

Recently, the rising bubble has been studied both theoretically
and experimentally and also by simulation.9–15 Theories have been
given for the rising velocity of a bubble of given shape,7,16 but no
theories have been given to predict the shape of the bubble as far as
we know.

The lack of the theory predicting the bubble shape is related
to the fact, first shown by Tanveer,2 that perturbative calculation
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cannot be performed for the shape change of the bubble. One expects
that when a bubble starts to move, it changes the shape from circular
to elliptic. Tanveer, however, has shown that the circular solution
is an isolated solution, which is always valid, and other solutions
cannot be obtained by the perturbation method.

There is another difficulty in calculating the bubble shape. The
bubble shape we are talking about is the shape of the perimeter in the
2D plane parallel to the cell wall. However, the perimeter of the bub-
ble in the Hele–Shaw cell is not a line, but a region having a length
of the order of the gap thickness. The 3D structure of this region
influences the 2D shape of the bubble.8,16 In the classical works of
Tayler–Saffman and Tanveer, the interfacial region was regarded as
a line across which the pressure changes discontinuously. The dis-
continuity in the pressure is given by the air/fluid surface tension
times twice of the mean curvature of the interface, i.e., the average of
the curvature in the plane perpendicular to the cell wall and that in
the plane parallel to the cell wall. Taylor and Saffman conducted the
analysis assuming that the first curvature is dominant and is con-
stant.1 This assumption becomes equivalent to setting the surface
tension to zero in the present problem. Tanveer took into account of
the effect of the second curvature, but this was not enough since the
first curvature also changes when the interface is moving, as it was
first shown by Bretherton.17 Taylor and Saffman discussed this effect
in their classical work1,18 but did not develop a theory for it. Park and
Homsy considered this effect and derived a new boundary condi-
tion for the perimeter.19 Their boundary condition makes the prob-
lem non-linear and thus difficult to handle analytically. Accordingly,
their boundary condition has not been used in previous studies apart
from numerical simulations.16

In this paper, we shall calculate the deformation of a rising bub-
ble using Park–Homsy’s boundary condition. We take an approach
different from the previous ones. We first show that the set of equa-
tions to be solved can be derived by a minimization of a certain
functional for the shape change of the bubble and then determine
the shape assuming an elliptical shape of the bubble. This approach
is not exact, but it allows us to have an analytical expression for
the shape and the velocity of the bubble as a function of various
experimental parameters. The same approach has been used inmany
other problems.20–23

The structure of this paper is as follows: In Sec. II, we review the
boundary condition by Park andHomsy and state the problem in the
form of a variational problem. In Sec. III, we consider the motion
of a bubble in a Hele–Shaw cell and derive a reduced model using
the variational principle. In Sec. IV, we analyze the reduced model
and discuss the shape and the velocity of the bubble as a function of
various physical parameters. Finally, we conclude briefly in Sec. V.

II. VARIATIONAL FORMULATION

A. Basic equation
We consider a very large Hele–Shaw cell filled with a liquid

of viscosity � tilted against the horizontal plane with angle α (see
Fig. 1). Inside the liquid, there is a small air bubble that rises with
certain velocity U due to gravity. The gap distance d0 of the Hele–
Shaw cell is assumed to bemuch smaller than the bubble size, and the
capillary length is

�
γ�ρg (where ρ and γ are the density and the sur-

face tension of the liquid, respectively). Therefore, the bubble takes
a pancake shape of thickness d0 between the cell wall; the thickness
of the liquid film between the bubble and the plates is ignored.

We take the x–y coordinate in the plane of the Hele–Shaw cell,
with the y axis being in the horizontal plane. Let u(r) be the depth-
average 2D velocity of the fluid at point r, and u satisfies the Darcy
equation,

u = −k(∇p + ρg sinαex), (1)

where k = d20
12� , p is the pressure, and ex is the unit vector along the x

axis. The velocity u satisfies the incompressible condition,

∇ ⋅ u = 0. (2)

Equations (1) and (2) give the Laplace equation for p,

∇2p = 0. (3)

Therefore, u is obtained if the boundary condition for p is known.
Park and Homsy19 conducted asymptotic analysis for the prob-

lem and derived the following effective boundary condition for the
pressure p (see also Ref. 24):

FIG. 1. A bubble in a Hele–Shaw cell.
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p = −2γ
d0
�1 + βCa2�3n +�� − γ

R(s)�π4 +O(Ca2�3n )�, (4)

[u] = O�Ca2�3n �. (5)

Here, Can = ��u⋅n�
γ is the capillary number defined for the normal

velocity un = u ⋅n at the boundary of the bubble, R(s) is the local
radius of the curvature of the bubble, and β is a numerical constant
that is equal to 3.8 when the interface is locally advancing (un > 0)
and equal to −1.9 when the interface is receding (un < 0). [u] is the
difference between the velocity un and the moving velocity of the
bubble boundary. Introducing the velocity U∗ = γ/�, the capillary
number Can is written as

Can = �un�U∗ . (6)

When Can is small, we can consider the leading order only, and
Eq. (4) becomes

p = −2γ
d0
�1 + βCa2�3n � − γ

R(s) π4 , (7)

[u] = 0. (8)

Here, we have kept the term 2γ
d0 Ca

2�3
n since Ca2�3n �d0 may be compa-

rable with 1/R(s) when d0/R(s) is small. Furthermore, the constant
2γ
d0 in Eq. (7) can be ignored by shifting p by a constant. Therefore,
we finally have the following boundary condition:

p = −2γ
d0

βCa2�3n − γ
R(s) π4 . (9)

The other boundary condition far from the bubble is obtained from
the condition that there is no flow,

for �r�→∞, p→ −ρgx sinα. (10)

Equation (3) and the boundary conditions (9) and (10) compose the
basic equations for the rising bubble problem in the Hele–Shaw cell.

B. Variational formulation
The basic equations described above can be derived from a vari-

ational principle similar to the Onsager variational principle.25 We
define a functional called RayleighianR[u(r)], which is a functional
of the velocity field u(r). R[u(r)] is chosen in such a way that the
minimum condition of the functional gives the same set of equa-
tions given in Subsection II A. The RayleighianR[u(r)] consists of
two parts: one is the energy dissipation partΦ[u(r)], which is related
to the energy dissipation (or entropy production) created in the sys-
tem when the viscous fluid is flowing with the velocity u(r), and the
other part is related to the free energy change rate Ȧ[u(r)] when the
fluid elements are moving with the velocity u(r),

R[u(r)] = Φ[u(r)] + Ȧ[u(r)]. (11)

In the present problem, the functional of the dissipation
Φ[u(r)] is given by the sum of two integrals,

Φ[u(r)] = Φbulk[u(r)] +ΦBreth[u(r)], (12)

where

Φbulk[u(r)] = d0
2k �Ωc

u2dxdy (13)

stands for the energy dissipation in the bulk and

ΦBreth[u(r)] = 6�(U∗)1�3
5 �

@Ω
β(un)u5�3n ds (14)

stands for the extra energy dissipation due to the motion of the
perimeter. In Eq. (13), Ωc denotes the 2D region in the Hele–Shaw
cell occupied by the liquid and @Ω denotes the inner boundary ofΩc.
The function β(un) takes the value of β1 = 3.8 when un > 0 and the
value of β2 = −1.9 when un < 0. We shall call Φbulk bulk dissipation
and ΦBreth Bretherton dissipation. A detailed discussion on Eq. (14)
is given in Appendix A.

The free energy of the system is given by the sum of the
gravitational energy and the surface energy,

A = �
Ωc
ρgd0x sinαdxdy +

πγd0
4 �

@Ω
ds. (15)

Ȧ is given by the time derivative of A, which is calculated as

Ȧ = ρgd0 sinα�
Ωc
u ⋅ exdxdy + πγd0

4 �
@Ω

unκds, (16)

where κ = 1
R(s) is the local curvature of the boundary @Ω.

We minimize the Rayleighian with respect to u under the
constraint ∇ ⋅ u = 0, introduce a Lagrangian multiplier d0p, and
denote

Rp =R − d0 �
Ωc
p∇ ⋅ udxdy. (17)

By integration by parts (noting that n points intoΩc),

Rp =R + d0 �
@Ω

punds + d0 �
Ωc
u ⋅ ∇pdxdy.

One can easily verify that the Euler–Lagrange equation of the func-
tional Rp gives Eq. (1) and the boundary condition (9) in Subsec-
tion II A.

The above variational formula is similar to that of the standard
Onsager principle.20–23 The only difference is that the dissipation
function is not a quadratic form with respect to u. This is due to the
non-quadratic term on the boundary @Ω arising from the Brether-
ton energy dissipation. In the following, we will use the variational
formula as an approximation tool to study the shape changes of the
rising bubble in the Hele–Shaw cell.

III. DERIVATIONS OF A REDUCED MODEL
FOR A RISING BUBBLE

A. Ansatz of the problem
To analyze the shape changes of the bubble, we assume that

the bubble is elliptic as shown in Fig. 1. It has been shown both
theoretically1 and experimentally8 that the elliptic shape is a good
approximation when the deviation from the circular shape is small.
The radii of the ellipse in x and y directions are a and b, respec-
tively. The vertical velocity of the center of the bubble is U. Since the
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volume V0 of the bubble is estimated to be πabd0 (where the volume
of the liquid between the gas and the wall and that in the perimeter
region are ignored) and is constant, b is given by

b = V0

πd0a
.

Hence, there are two parameters to be determined, a and U. In the
following, we will use the variational principle to derive a reduced
dynamic model for them.

B. Free energy
The free energy of the system consists of the interface energy

and the gravitational energy. The interface energy is given by

Asurf = 2πγab + πγd0L
2

, (18)

where L is the 2D contour length of the boundary of the ellipse. Since
πab = V0/d0 is constant, the time derivative of Asurf is calculated as

Ȧsurf = πγd0
2

L̇. (19)

Using the approximation L ≈ π( 32(a + b) −√ab), we have
Ȧsurf = 3π2γd0

4
�1 − b

a
�ȧ. (20)

The gravitational energy is given by Agrav = −ρgX sin αV0,
where X is the x coordinate of the center of mass of the bubble. Since
Ẋ = U, the time derivative of the gravitational energy is written as

Ȧgrav = −ρgV0U sinα. (21)

Therefore, Ȧ = Ȧgrav + Ȧsurf is given by

Ȧ = −ρgV0U sinα + 3π2γd0
4
�1 − b

a
�ȧ. (22)

C. Energy dissipation functions
The energy dissipation can also be expressed in terms of ȧ and

U. If ȧ andU are given, the velocity field u(r) is calculated, and there-
fore, the functionalΦ[u(r)] can be written as a functionΦ(ȧ,U). The
function Φ(ȧ, U) is equal to the minimum value of the functional
Φ[u(r)] for the given boundary condition at @Ω.

1. Bulk dissipation
If the origin of the coordinate system is taken at the center of

the bubble, the boundary of the bubble is written as

x = a cos θ, y = b sin θ, θ ∈ (0, 2π].
The corresponding outer normal direction is given by

n = 1√
b2 cos2 θ + a2 sin2 θ

(b cos θ, a sin θ)T .
When the center is moving at velocity U and a is changing at rate ȧ,
the normal velocity of the boundary un = u ⋅ n is calculated as

un = Uf1(a�b, θ) + ȧf2(a�b, θ),

where

f1(a�b, θ) = cos θ�
cos2 θ + (a�b)2 sin2 θ , (23)

f2(a�b, θ) = cos 2θ�
cos2 θ + (a�b)2 sin2 θ . (24)

If the velocity un at the boundary is given, the velocity field u(r) in
the bulk is given by u = −(1�k)∇p̃, where p̃ is the solution of the
Laplace equation (3) satisfying the boundary condition n∇p̃ = −kun
at @Ωc and∇p̃ → 0 at infinitely far from the bubble. The solution of
this equation is written as

p̃(x, y) = r0U
k

ψ1� xr0 ,
y
r0
� + r0ȧ

k
ψ2� xr0 ,

y
r0
�, (25)

where ψi (i = 1, 2) is the solution of the following dimensionless
equation:

�������������

−�ψi = 0 in Ω̂c,

∇ψi ⋅ ñ = fi(a�b, θ) on @Ω̂,

∇ψi ⋅ ñ→ 0 as �r̂�→∞.

(26)

Here, the radius r0 = √ab is taken to be the unit of length, and the
domain Ω̂c is defined by Ω̂c ∶= {(x�r0, y�r0)�(x, y) ∈ Ωc}.

Therefore, the energy dissipation function in the bulk region is
computed as

Φbulk = 6�
d0 �Ωc

(k∇p̃)2dxdy = 6�
d0 �Ω̂c

�r0U∇ψ1 + r0ȧ∇ψ2�2dx̂dŷ
= 6�r20

d0
(k11U2 + 2k12Uȧ + k22ȧ2), (27)

where

kij = �
Ω̂c
∇ψi ⋅ ∇ψjdx̂dŷ. (28)

By integration by parts, the coefficients kij can be written as

kij = �
@Ω̂

ψifj(a�b, θ̂)dŝ. (29)

For an elliptic bubble, the Laplace equation (26) can be solved
analytically and kij is calculated analytically (see Appendix B),

k11 = πb
a
, k12 = 0, k22 = πb

2a
. (30)

It is important to note that k12 is zero. This implies that there is
no term that couples the translational motion and the shape change
in the bulk dissipationΦbulk. In other words, the bubble remains cir-
cular if the Bretherton dissipation ΦBreth is not considered. The fact
that k12 becomes zero for the ellipse can be shown by the symmetry
argument. Since the elliptic bubble is symmetric with respect to the
y axis, the dissipation function must be even with respect to U, i.e.,
Φbulk(ȧ, U) = Φbulk(ȧ, − U). This gives k12 = 0.
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2. Bretherton dissipation
Given un, the Bretherton dissipation can be calculated straight-

forwardly by Eq. (14),

ΦBreth = 6�
5 �@Ω β(un)u2n���un�γ �

− 1
3

ds

= 6�2�3γ1�3r0
5 � 2π

0
β(θ)�f1U

+ f2ȧ�5�3�(b�r0)2 cos2 θ + (a�r0)2 sin2 θdθ. (31)

D. Evolution equation
Given Φ = Φbulk + ΦBreth and Ȧ = Ȧgrav + Ȧsurf as functions of ȧ

and U, the time evolution of the bubble is given by

@Φ
@U

+
@Ȧ
@U
= 0, @Φ

@ȧ
+
@Ȧ
@ȧ
= 0. (32)

This gives the following equation for U and ȧ:

12�r20
d0

k11U + 2�2�3γ1�3b� 2π

0
β(θ)(f1U + f2ȧ)f1�f1U + f2ȧ�1�3

×�cos2 θ + (a�b)2 sin2 θdθ = ρgV0 sinα, (33)

12�r20
d0

k22ȧ + 2�2�3γ1�3b� 2π

0
β(θ)(f1U + f2ȧ)f2�f1U + f2ȧ�1�3

×�cos2 θ + (a�b)2 sin2 θdθ = −3π2γd0
4
�1 − b

a
�. (34)

This equation can be solved for ȧ and U, and it determines the time
evolution of the bubble shape.

If we are interested only in the steady state of the bubble, we
have ȧ = 0. Then, Eqs. (33) and (34) are simplified to

12�r20
d0

k11U + 2�2�3γ1�3r0U2�3k̃11 = ρgV0 sinα, (35)

2�2�3γ1�3r0U2�3k̃12 = −3π2γd04
�1 − b

a
�, (36)

where we have introduced two dimensionless coefficients,

k̃11 = � 2π

0
β(θ)�f1�5�3�(b�r0)2 cos2 θ + (a�r0)2 sin2 θdθ, (37)

k̃12 = � 2π

0
β(θ) f1f2�f1�1�3

�(b�r0)2 cos2 θ + (a�r0)2 sin2 θdθ. (38)

Since r0 = √ab, k̃11 and k̃12 depend on the ratio b/a only. We call
this ratio the shape parameter and denote it by S,

S = b
a
. (39)

Figure 2 shows k̃11 and k̃12 as a function of S. When S changes from
0.5 to 2, k̃11 changes significantly, while k̃12 remains almost constant
(changes from 0.85 to 1.1).

IV. RESULTS AND DISCUSSIONS

A. Rising velocity
We first discuss the rising velocity of the bubble. The rising

velocity is determined by the balance of two forces, the gravity and
the frictional force. The gravity is expressed by the dimensionless
number Boα called Bond number,

Boα = ρgr20 sinα
γ . (40)

This represents the effect of the inclination angle of the cell. The
frictional force is determined by the left-hand side of Eq. (35).

Equations (35) and (36) can be rewritten in a dimensionless
form as

12r20S
d20

U
U∗ +

2r0
πd0

k̃11� U
U∗ �

2�3 = Boα, (41)

8r0
3π2d0

k̃12� U
U∗ �

2�3 = 1 − S, (42)

where U∗ = γ/�. If we ignore the k̃11 term (the Bretherton term) in
Eq. (41), the velocity is given by

FIG. 2. Dependence of the coefficients
k̃11 and k̃12 on the shape parameter
S = b/a.
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FIG. 3. The relation between the rising velocity and the gravitational force of a
bubble in a Hele–Shaw cell. The solid line is the result of the present theory. The
dashed-dotted line is the result of Taylor and Saffman theory for the circular bubble
[Eq. (44)]. The dotted line is their result for the elliptic bubble [Eq. (43)] where the
shape parameter S is calculated by Eq. (42).

U = U∗ d20
12r20S

Boα = d20ρg sinα
12�S . (43)

This is exactly the velocity for a small elliptic bubble given by Taylor
and Saffman.1 There, they did not consider the Bretherton term and
S can be chosen freely. If the bubble is circular, the rising velocity
becomes

Ucircle = d20ρg sinα
12� . (44)

Figure 3 shows the velocity plotted against the Bond number.
The solid lines indicate the velocity calculated by solving Eqs. (35)
and (36), and the dotted and the dashed lines indicate the velocity

calculated by Eqs. (43) and (44), respectively. It is seen that the sim-
ple circular model gives a reasonable estimate for the rising velocity.
The difference between the solid line and the dashed line represents
the effect of shape parameter. As we shall show in the following, the
rising bubble becomes flattened (S > 1), and therefore, the rising
velocity becomes smaller than that of the circular bubble. The differ-
ence between the dotted line and the solid line represents the effect
of Bretherton dissipation. This term slows down the rising velocity.

The effect of Bretherton dissipation on the rising velocity was
considered by Eck and Siekmann.7 They obtained an expression for
the rising velocity of a circular bubble similar to Eq. (41),

3 + 5.28
d0
2r0
�U∗
U
�1�3 = ρgd20 sinα

4 �U . (45)

For the circular bubble, Eq. (41) gives the following result [with the
use of k̃11(1) ≈ 9.59]:

3 + 3.05
d0
2r0
�U∗
U
�1�3 = ρgd20 sinα

4 �U . (46)

The difference between Eqs. (45) and (46) are only in coefficients.
They come from the difference in the estimation of the extra energy
dissipation at the perimeter: Eck and Siekmann used the analysis of
Fritz,26 while we used the Park–Homsy boundary condition. These
results are compared in Fig. 4 together with the experimental data
obtained by Eck and Siekmann.7 [Note that in the parameter range
shown in Fig. 4, our result can be safely represented by the circu-
lar bubble since the capillary number U/U∗ is less than 10−3 (see
Fig. 3).] Both results are in good agreement with experiments, but
Eq. (46) is closer to the experimental data, indicating that the Park–
Homsy boundary condition (or Bretherton’s analysis) is closer to
reality.

B. Shape of the rising bubble
Figure 5 shows how the shape parameter S = b/a changes with

the Bond number Boα. The shape parameter S is equal to 1 when

FIG. 4. Comparison between theories and experiment. The
dotted line is the result of Eck and Siekmann [Eq. (45)],
and the solid line is our result [Eq. (46)]. The marks are
experimental data from Ref. 7 (Fluid 1: 60% isopropanol,
40% water; Fluid 2: 70% glycerine, 18% isopropanol, 12%
water).
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FIG. 5. The relation between the shape parameter S = b/a and the gravitational
force.

Boα = 0. As the bubble starts to rise, S becomes larger than 1, so the
bubble is flattened. It is important to note that this shape change is
due to the Bretherton dissipation. If the Bretherton dissipation is not
considered, the circular bubble will rise keeping the circular shape,
as it was discussed previously.1,2 The difference of the Bretherton
dissipation in the advancing side and the receding side breaks the
symmetry of the circular shape and causes the deformation of the
bubble.

Figure 5 shows that the shape change is larger in the thick cell
than in the thin cell. This is because the Bretherton effects become
more significant in a thicker Hele–Shaw cell.

Figure 6 shows the shape parameter plotted against the rising
velocity U/U∗. The dashed line in Fig. 6 represents the following

FIG. 6. The relation between the shape parameter S = b/a and the rising velocity
U/U∗ of the bubble. The dashed line represents Eq. (47).

simple equation:

S = 1 + 0.297
r0
d0
⋅ � U

U∗ �
2�3

. (47)

This equation is obtained from Eq. (36) by putting k̃12 equal to 1.1,
the asymptotic value of k̃12 for large S (see Fig. 2). Figure 6 shows
that this simple relation reproduces the numerical results quite well.

C. Effect of the bubble size
We now study how the bubble size affects the rising velocity

and its shape changes in a vertical cell (α = π
2 ). We take the capillary

length l = �γ�ρg as a reference length unit. For the given thick-
ness of the Hele–Shaw cell, we change the bubble size r0 and solved
Eqs. (35) and (36). The results are shown in Figs. 7 and 8.

Figure 7 shows the rising velocity U plotted against the bubble
size r0 for thick (d0/` = 0.4) and thin (d0/` = 0.2) cells. It is seen that
large bubbles rise with the velocity independent of their size. This is
because the gravitational force and the frictional force are both pro-
portional to the volume of the bubble in the Hele–Shaw cell. The
effect can be seen in the simple model [Eq. (44)]. Small bubbles rise
with size-dependent velocity, which is smaller than the asymptotic
value. This is due to the Bretherton dissipation: the Bretherton dis-
sipation is proportional to the length of the perimeter and becomes
significant for smaller bubbles.

A careful inspection of Fig. 7 indicates that the rising veloc-
ity shows a small maximum as a function of r0. The maxi-
mum arises from the two competing effects: as the bubble size
increases, the effect of Bretherton dissipation decreases, while the
effect of bulk dissipation increases due to the flattening of the
bubble.

Figure 8 shows the shape parameter S = b/a plotted against r0/l.
It is seen that S increases linearly with r0 and decreases with the
increase in d0. Such behavior can be understood from Eq. (47).

FIG. 7. The relation between the rising velocity and the bubble size.
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FIG. 8. The relation between the shape parameter S = b/a and the bubble size.

V. CONCLUSIONS
By using a variational principle, we have derived a simple evolu-

tion equation for the shape change of a rising bubble in an infinitely
large Hele–Shaw cell. This equation explains the flattening of a ris-
ing bubble observed in experiments.7,8 Our analysis shows that the
Bretherton dissipation is essential for the flattening. Without this
term, the bubble would take a circular shape. We gave a quantita-
tive prediction about the shape change and velocity of the bubble.
They can be checked experimentally.

In the present analysis, we have ignored the effect of the side
boundary of a Hele–Shaw cell. If the size of the Hele–Shaw cell is
not large, the boundary effect makes the bubble elongated.2,27,28 The
competition of the Bretherton effect and the boundary effect should
be the reason for the complex shape changes of the bubble in a Hele–
Shaw cell. Indeed, Kopf-Sill and Homsy showed that the flattening
occurs only for bubbles relatively small compared with the Hele–
Shaw cell.8 Larger bubbles, on the other hand, are elongated.8 More
theoretical work is needed to quantify how the two effects together
affect the shape change of an air bubble. This will be left for future
work.
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APPENDIX A: THE BRETHERTON ENERGY
DISSIPATIONS

In this subsection, we aim to compute the viscous energy dis-
sipation in the vicinity of the boundary of a moving bubble in a

Hele–Shaw cell. Since the dissipation is related to the classical analy-
sis in Bretherton’s paper,17 we call it a Bretherton energy dissipation
term. We consider a two-dimensional problem. It is a long two-
dimensional bubble in a channel between two solid boundaries, as
shown in Fig. 9. The computations below are based on the previous
analysis in Refs. 17 and 19.

We analyze this problem by a generalized force balance argu-
ment. Suppose the fluid pressure in the left-hand side is P2 and that
in the right-hand side is P1. We assume that the bubble moves in the
right direction. If the bubble moves for a short distance, the liquid
in the left part changes with a volume V2 and that in the right part
changes with a volume V1. Assume that the air bubble is incom-
pressible, then we have V1 = V2. The free energy changes in this
process are given by −(P2V2 − P1V1). If the bubble moves with a
velocity U, the energy changing rate is given by

Ȧ = −(P2 − P1)d0U.

Here, d0 is the thickness of the channel. Then, the driven force
is given by (P2 − P1)d0. We assume that the energy dissipation
function, which is half of the energy dissipation rate, is given by

Φ = 1
s
ξUs.

By the Onsager principle, the driven force is balanced by the friction
force,

ξUs−1 = (P2 − P1)d0. (A1)
By the previous analysis in Ref. 19, we have the jump condition for
pressures,

P − P1 ≈ γ
d0�2(1 + β1(Ca)2�3),

P − P2 ≈ γ
d0�2(1 − β2(Ca)2�3), (A2)

where P is the pressure in the bubble,Ca = �U/γ is the capillary num-
ber, γ is the surface tension, � is the viscosity of the fluid, d0 is the
distance between the two boundaries of the channel, and β1 ≈ 3.8
and β2 ≈ 1.9 are two positive constants. We then have

P2 − P1 ≈ (β1 + β2)2γd0 C2�3
a = (β1 + β2)2γd0 �

�U
γ �

2�3
.

Combining it with Eq. (A1), we have

s = 5
3
, ξ = 2(β1 + β2)γ1�3�2�3.

This gives a non-quadratic formula for the viscous energy dissipa-
tion in the vicinity of the bubble,

Φ = 3ξ
5
U5�3 = 6(β1 + β2)

5
�(U∗)1�3U5�3, (A3)

FIG. 9. A bubble between two plates.
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where U∗ = γ/η. The above analysis can also be done separately
for the head and tail parts. Then, we obtain the Bretherton energy
dissipation terms

Φhead = 6β1
5

�(U∗)1�3U5�3 ≈ 4.56 �(U∗)1�3U5�3, (A4)

Φtail = 6β2
5

�(U∗)1�3U5�3 ≈ 2.28�(U∗)1�3U5�3, (A5)

where we denote byΦhead andΦtail the dissipation terms in the head
and tail parts, respectively.

APPENDIX B: SOLUTION OF THE LAPLACE EQUATION
IN AN INFINITE DOMAIN

When r0� L, the boundary effect of the Hele–Shaw cell can be
ignored. In this case, the Laplace equation in Sec. III can be solved
analytically. We suppose Ω̂c = R2 � Ω̂. Then, for i = 1, 2, we need to
solve �������������

−�ψi = 0 in R2 � Ω̂,

ñ ⋅ ∇ψi = fi(a�b, θ̂) on @Ω̂,

ψi → const., �r� goes to infinity.
(B1)

The equation can be solved by a harmonic mapping method when
Ω̂ is elliptic.

Introduce a harmonic mapping in the complex plane that maps
a circle with radius R = â + b̂ to the ellipse Ω̂ with radii â = a/r0 and

b̂ = b�r0,
z = F(ζ) = 1

2
�ζ + c2

ζ �, (B2)

where ĉ2 = â2 − b̂2. Here, we choose the coordinate so that the radius
â is in the x direction. Its inverse mapping is given by ζ = F−1(z)= z +

√
z2 − c2. The Laplace equation in an infinite domain outside

a circular can be solved explicitly. Actually, if a harmonic function ϕ
outside a circle satisfies a Neumann boundary condition ∇ϕ ⋅n = g
on the circle |ζ| = R, then it can be computed from its boundary data
as29

ϕ(ζ) = 1
π ��ζ̃�=R g(ζ̃) ln

1
�ζ̃ − ζ�dζ̃ (B3)

for all ζ in the infinite domain. Using this formula, we could obtain
the solution for ψi as follows: If we have @nψi = f i in @nΩ̂, after the
mapping, we have a harmonic function ϕi(ζ) = ψi(Fζ) outside a

circle. Direct computations give @nϕi(ζ) = �b̂2 cos2 θ̃+â2 sin2 θ̃
R fi( âb̂ , θ̃),

where ζ = Reiθ̃. Using Eq. (B3), we obtain
ψi(z) = ϕi(r̃eiφ)

= 1
π �

2π

0
fi(â�b̂, θ̃) ln 1

�Reiθ̃ − r̃eiφ�
×�b̂2 cos2 θ̃ + â2 sin2 θ̃dθ̃, (B4)

where (r̃eiφ) = F−1z.

Then, we could compute the coefficients kij as

kij = �
@Ω̂

fi(s)ψj(s)ds = � 2π

0
fi(â�b̂, θ)ϕj(Reiθ)�b̂2 cos2 θ + â2 sin2 θdθ

= 1
π �

2π

0
fi(â�b̂, θ)� 2π

0
fj(â�b̂, θ̃) ln 1

�Reiθ̃ − Reiθ�
�
b̂2 cos2 θ̃ + â2 sin2 θ̃dθ̃

�
b̂2 cos2 θ + â2 sin2 θdθ

= 1
π �

2π

0
fi(â�b̂, θ)� 2π

0
fj(â�b̂, θ̃) ln 1�(cos θ − cos θ̃)2 + (sin θ − sin θ̃)2

�
b̂2 cos2 θ̃ + â2 sin2 θ̃dθ̃

�
b̂2 cos2 θ + â2 sin2 θdθ

= 1
π �

2π

0
� 2π

0
fi(â�b̂, θ)fj(â�b̂, θ̃) ln 1�

2(1 − cos(θ̃ − θ))
�
b̂2 cos2 θ̃ + â2 sin2 θ̃

�
b̂2 cos2 θ + â2 sin2 θdθ̃dθ.

Direct computations give

k11 = b̂2

π �
2π

0
� 2π

0
cos(θ) cos(θ̃) ln 1�

2(1 − cos(θ̃ − θ))dθ̃dθ

= b̂2

π �
2π

0
� 2π

0
cos(θ) cos(θ̃) ln 1

2� sin((θ̃ − θ)�2)�dθ̃dθ

= b̂2

π �
2π

0
cos(θ)� 2π

0
cos(θ̂ + θ) ln 1

2� sin(θ̂�2)�dθ̂dθ

= b̂2

π �
2π

0
cos2(θ)dθ� 2π

0
cos(θ̂) ln 1

2� sin(θ̂�2)�dθ̂

− b̂2

π �
2π

0
cos(θ) sin(θ)dθ� 2π

0
sin(θ̂) ln 1

2� sin(θ̂�2)�dθ̂

= b̂2

π ⋅ π ⋅ π + 0 = πb2

r20
,

where we have used integration by parts for the term
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� 2π

0
cos(θ̂) ln 1

2� sin(θ̂�2)�dθ̂ = 2�
π

0
cos(θ̂) ln 1

2 sin(θ̂�2)dθ̂ = π.
Similarly, we can obtain

k12 = 0, k22 = πb2

2r20
.
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